The Ore conjecture
暂无分享,去创建一个
M. Liebeck | A. Shalev | E. O'Brien | P. Tiep
[1] O. Ore. SOME REMARKS ON COMMUTATORS , 1951 .
[2] M. Marcus,et al. On Matrix Commutators , 1960, Canadian Journal of Mathematics.
[3] Commutators in the special and general linear groups , 1961 .
[4] Commutators of matrices with coefficients from the field of two elements , 1962 .
[5] G. E. Wall. On the conjugacy classes in the unitary, symplectic and orthogonal groups , 1963, Journal of the Australian Mathematical Society.
[6] Bomshik Chang,et al. The conjugate classes of Chevalley groups of type (G2) , 1968 .
[7] T. A. Springer,et al. Seminar on Algebraic Groups and Related Finite Groups , 1970 .
[8] Michael Aschbacher,et al. Corrections to “Involutions in Chevalley groups over fields of even order” , 1976, Nagoya Mathematical Journal.
[9] P. Gérardin,et al. Weil representations associated to finite fields , 1977 .
[10] G. Lusztig,et al. The characters of the finite unitary groups , 1977 .
[11] Charles W. Curtis,et al. Representations of finite groups of Lie type , 1979 .
[12] W. Hesselink. Nilpotency in classical groups over a field of characteristic 2 , 1979 .
[13] Kenzo Mizuno. The Conjugate Classes of Unipotent Elements of the Chevalley Groups $E_7$ and $E_8$ , 1980 .
[14] D. Deriziotis. The Centralizers of Semisimple Elements of the Chevalley Groups $E_7$ and $E_8$ , 1983 .
[15] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[16] Roger W. Carter,et al. Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .
[17] Commutators in the symplectic group , 1988 .
[18] Martin W. Liebeck,et al. The Subgroup Structure of the Finite Classical Groups , 1990 .
[19] Über Kommutatoren in endlichen einfachen Gruppen , 1992 .
[20] Gary M. Seitz,et al. SUBGROUPS OF MAXIMAL RANK IN FINITE EXCEPTIONAL GROUPS OF LIE TYPE , 1992 .
[21] I. Janiszczak,et al. The semisimple conjugacy classes of finite groups of lie type E6 and E7 , 1993 .
[22] Gary M. Seitz,et al. Subgroups generated by root elements in groups of Lie type , 1994 .
[23] P. Fleischmann,et al. The semisimple conjugacy classes and the generic class number of the finite simple groups of lie type E8 , 1994 .
[24] H. I. Blau. A fixed-point theorem for central elements in quasisimple groups , 1994 .
[25] Scott H. Murray,et al. Generating random elements of a finite group , 1995 .
[26] D. Gluck. Sharper Character Value Estimates for Groups of Lie Type , 1995 .
[27] M. Liebeck,et al. Reductive subgroups of exceptional algebraic groups , 1996 .
[28] P. Tiep,et al. Minimal characters of the finite classical groups , 1996 .
[29] P. Tiep,et al. Some Characterizations of the Weil Representations of the Symplectic and Unitary Groups , 1997 .
[30] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[31] R. Gow. Commutators in Finite Simple Groups of Lie Type , 2000 .
[32] Frank Lübeck. SMALLEST DEGREES OF REPRESENTATIONS OF EXCEPTIONAL GROUPS OF LIE TYPE , 2001 .
[33] R. Guralnick,et al. Cross characteristic representations of even characteristic symplectic groups , 2004 .
[34] M. Liebeck,et al. Character Degrees and Random Walks in Finite Groups of Lie Type , 2005 .
[35] Rank 3 permutation modules of the finite classical groups , 2005 .
[36] William R. Unger,et al. Computing the character table of a finite group , 2006, J. Symb. Comput..
[37] Derek F. Holt,et al. Computing conjugacy class representatives in permutation groups , 2006 .
[38] Meinolf Geck,et al. Group representation theory , 2007 .
[39] A. Shalev. Word maps, conjugacy classes, and a noncommutative Waring-type theorem , 2009 .
[40] Shelly Garion,et al. Commutator maps, measure preservation, and T-systems , 2007, 0708.3664.
[41] R. Guralnick,et al. Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements , 2009, 0902.2238.