Evaluation of serial crystallographic structure determination within megahertz pulse trains

The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

[1]  Anton Barty,et al.  XGANDALF – extended gradient descent algorithm for lattice finding , 2019, Acta crystallographica. Section A, Foundations and advances.

[2]  Marcin Sikorski,et al.  The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation1 , 2019, Journal of synchrotron radiation.

[3]  S. Boutet,et al.  Generation of high-intensity ultrasound through shock propagation in liquid jets , 2019, Physical Review Fluids.

[4]  Steffen Hauf,et al.  Megahertz serial crystallography , 2018, Nature Communications.

[5]  Steffen Hauf,et al.  Megahertz data collection from protein microcrystals at an X-ray free-electron laser , 2018, Nature Communications.

[6]  Roberto Dinapoli,et al.  The Adaptive Gain Integrating Pixel Detector at the European XFEL , 2018, Journal of synchrotron radiation.

[7]  H. Chapman,et al.  Rapid sample delivery for megahertz serial crystallography at X-ray FELs , 2018, IUCrJ.

[8]  H. Chapman,et al.  Mix-and-diffuse serial synchrotron crystallography , 2017, IUCrJ.

[9]  Anton Barty,et al.  Double-flow focused liquid injector for efficient serial femtosecond crystallography , 2017, Scientific Reports.

[10]  Garth J. Williams,et al.  Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser , 2017, Proceedings of the National Academy of Sciences.

[11]  H. N. Chapman,et al.  Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography , 2016, Nature.

[12]  Liubov Samoylova,et al.  Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL , 2016 .

[13]  Anton Barty,et al.  OnDA: online data analysis and feedback for serial X-ray imaging1 , 2016, Journal of applied crystallography.

[14]  H. Chapman,et al.  Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.

[15]  Garth J. Williams,et al.  Liquid explosions induced by X-ray laser pulses , 2015, Nature Physics.

[16]  Anton Barty,et al.  Accurate determination of segmented X-ray detector geometry. , 2015, Optics express.

[17]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[18]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[19]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[20]  A. Mancuso,et al.  Structural biology at the European X-ray free-electron laser facility , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Anton Barty,et al.  Room-temperature macromolecular serial crystallography using synchrotron radiation , 2014, IUCrJ.

[22]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[23]  Elspeth F. Garman,et al.  RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography , 2013 .

[24]  Anton Barty,et al.  Crystallographic data processing for free-electron laser sources , 2013, Acta crystallographica. Section D, Biological crystallography.

[25]  F. Maia The Coherent X-ray Imaging Data Bank , 2012, Nature Methods.

[26]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[27]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[28]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  B. McNeil,et al.  X-ray free-electron lasers , 2010 .

[30]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[31]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[32]  M. Klintenberg,et al.  Radiation damage in biological material: Electronic properties and electron impact ionization in urea , 2008, 0808.1197.

[33]  K. Schmidt,et al.  Gas dynamic virtual nozzle for generation of microscopic droplet streams , 2008, 0803.4181.

[34]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[35]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[36]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[37]  J. Arthur,et al.  X-ray free-electron lasers , 2005 .

[38]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[39]  Abraham Szoke,et al.  Dynamics of biological molecules irradiated by short x-ray pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Alfonso M. Gañán-Calvo,et al.  Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams , 1998 .

[41]  Andrew V. Martin,et al.  When Diffraction Stops and Destruction Begins , 2018 .

[42]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[43]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..