Fast Color-Independent Ball Detection for Mobile Robots

This paper presents a novel scheme for fast color invariant ball detection in the RoboCup context. Edge filtered camera images serve as an input for an Ada Boost learning procedure that constructs a cascade of classification and regression trees (CARTs). Our system is capable to detect different soccer balls in the RoboCup and other environments. The resulting approach for object classification is real-time capable and reliable.

[1]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[2]  Thorsten Schmitt,et al.  Fast Image Segmentation, Object Recognition and Localization in a RoboCup Scenario , 1999, RoboCup.

[3]  Phillip Musumeci,et al.  Adaptive arc fitting for ball detection in RoboCup , 2003 .

[4]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[5]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[6]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[7]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[8]  Dong Hoon Lim,et al.  Robust edge detection in noisy images , 2006, Comput. Stat. Data Anal..

[9]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[10]  Luhong Liang,et al.  A detector tree of boosted classifiers for real-time object detection and tracking , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[11]  Hiroaki Kitano,et al.  RoboCup-97: The First Robot World Cup Soccer Games and Conferences , 1998, AI Mag..

[12]  Joachim Hertzberg,et al.  Automatic Reconstruction of Colored 3D Models , 2004 .

[13]  K. Lingemann,et al.  6D SLAM - preliminary report on closing the loop in six dimensions , 2004 .

[14]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[15]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[17]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[18]  Andreas Zell,et al.  Real-time object tracking for soccer-robots without color information , 2004, Robotics Auton. Syst..