Comparison of endothelial barrier functional recovery after implantation of a novel biodegradable polymer sirolimus-eluting stent in comparison to durable and biodegradable polymer everolimus-eluting stents.

[1]  R. Virmani,et al.  Direct Targeting of the mTOR (Mammalian Target of Rapamycin) Kinase Improves Endothelial Permeability in Drug-Eluting Stents—Brief Report , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[2]  V. Ribeiro,et al.  Functional comparison between the BuMA Supreme biodegradable polymer sirolimus-eluting stent and a durable polymer zotarolimus-eluting coronary stent using quantitative flow ratio: PIONEER QFR substudy. , 2018, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[3]  N. Leeper,et al.  Thrombotic Regulation From the Endothelial Cell Perspectives. , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[4]  V. Ribeiro,et al.  First-in-man randomised comparison of the BuMA Supreme biodegradable polymer sirolimus-eluting stent versus a durable polymer zotarolimus-eluting coronary stent: the PIONEER trial. , 2018, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[5]  J. W. Louwerenburg,et al.  5-Year Outcome Following Randomized Treatment of All-Comers With Zotarolimus-Eluting Resolute Integrity and Everolimus-Eluting PROMUS Element Coronary Stents: Final Report of the DUTCH PEERS (TWENTE II) Trial. , 2018, JACC: Cardiovascular Interventions.

[6]  R. Virmani,et al.  Endothelial Barrier Protein Expression in Biodegradable Polymer Sirolimus-Eluting Versus Durable Polymer Everolimus-Eluting Metallic Stents. , 2017, JACC. Cardiovascular interventions.

[7]  K. Bønaa,et al.  Drug-Eluting or Bare-Metal Stents for Coronary Artery Disease. , 2016, The New England journal of medicine.

[8]  J. Mehilli,et al.  Stent Polymers: Do They Make a Difference? , 2016, Circulation. Cardiovascular interventions.

[9]  Erik Jørgensen,et al.  Mechanisms of Very Late Drug-Eluting Stent Thrombosis Assessed by Optical Coherence Tomography , 2016, Circulation.

[10]  K. Dawkins,et al.  The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study , 2015, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[11]  Ning Wang,et al.  Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers , 2015, Journal of Cell Science.

[12]  Michel Vert,et al.  Head-to-Head Comparison of a Drug-Free Early Programmed Dismantling Polylactic Acid Bioresorbable Scaffold and a Metallic Stent in the Porcine Coronary Artery: Six-Month Angiography and Optical Coherence Tomographic Follow-Up Study , 2014, Circulation. Cardiovascular interventions.

[13]  A. Finn,et al.  Sirolimus-FKBP12.6 Impairs Endothelial Barrier Function Through Protein Kinase C-&agr; Activation and Disruption of the p120–Vascular Endothelial Cadherin Interaction , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[14]  R. Virmani,et al.  Preclinical evaluation of second-generation everolimus- and zotarolimus-eluting coronary stents. , 2013, The Journal of invasive cardiology.

[15]  A. Kirtane,et al.  The "final" 5-year follow-up from the ENDEAVOR IV trial comparing a zotarolimus-eluting stent with a paclitaxel-eluting stent. , 2013, JACC. Cardiovascular interventions.

[16]  A. Tzafriri,et al.  Mechanisms of Tissue Uptake and Retention in Zotarolimus-Coated Balloon Therapy , 2013, Circulation.

[17]  E. Dejana,et al.  The role of VE-cadherin in vascular morphogenesis and permeability control. , 2013, Progress in molecular biology and translational science.

[18]  H. Bøtker,et al.  Efficacy and safety of zotarolimus-eluting and sirolimus-eluting coronary stents in routine clinical care (SORT OUT III): a randomised controlled superiority trial , 2010, The Lancet.

[19]  Renu Virmani,et al.  One step forward and two steps back with drug-eluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. , 2009, JACC. Cardiovascular imaging.

[20]  F. Orsenigo,et al.  The role of adherens junctions and VE-cadherin in the control of vascular permeability , 2008, Journal of Cell Science.

[21]  G. Davı̀,et al.  Platelet activation and atherothrombosis. , 2007, The New England journal of medicine.

[22]  F. Luscinskas,et al.  Endothelial-Dependent Mechanisms of Leukocyte Recruitment to the Vascular Wall , 2007, Circulation research.

[23]  P. Fitzgerald,et al.  Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. , 2006, Journal of the American College of Cardiology.

[24]  David A. Schultz,et al.  A mechanosensory complex that mediates the endothelial cell response to fluid shear stress , 2005, Nature.

[25]  Shu Chien,et al.  Activation of integrins in endothelial cells by fluid shear stress mediates Rho‐dependent cytoskeletal alignment , 2001, The EMBO journal.

[26]  W. J. van der Giessen,et al.  Long-term endothelial dysfunction is more pronounced after stenting than after balloon angioplasty in porcine coronary arteries. , 1998, Journal of the American College of Cardiology.