HIV silencing and cell survival signatures in infected T cell reservoirs

[1]  A. Abate,et al.  Identification of astrocyte regulators by nucleic acid cytometry , 2023, Nature.

[2]  M. Churchill,et al.  Intact HIV Proviruses Persist in the Brain Despite Viral Suppression with ART , 2022, Annals of neurology.

[3]  M. Nussenzweig,et al.  Distinct gene expression by expanded clones of quiescent memory CD4+ T cells harboring intact latent HIV-1 proviruses , 2022, bioRxiv.

[4]  L. Montaner,et al.  Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones. , 2022, Immunity.

[5]  R. Siliciano,et al.  In Vivo Dynamics of the Latent Reservoir for HIV-1: New Insights and Implications for Cure. , 2021, Annual review of pathology.

[6]  Samantha D. Drinan,et al.  Intragenic proviral elements support transcription of defective HIV-1 proviruses , 2021, bioRxiv.

[7]  D. Kaufmann,et al.  Combined single-cell transcriptional, translational, and genomic profiling reveals HIV-1 reservoir diversity. , 2021, Cell reports.

[8]  R. Zurakowski,et al.  Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication , 2021, JCI insight.

[9]  Xiaochen Bo,et al.  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data , 2021, Innovation.

[10]  R. Siliciano,et al.  Antigen-driven clonal selection shapes the persistence of HIV-1 infected CD4+ T cells in vivo , 2020, bioRxiv.

[11]  Deqing Hu,et al.  Competition between PAF1 and MLL1/COMPASS confers the opposing function of LEDGF/p75 in HIV latency and proviral reactivation , 2020, Science Advances.

[12]  M. Nussenzweig,et al.  Antigen-responsive CD4+ T cell clones contribute to the HIV-1 latent reservoir , 2020, bioRxiv.

[13]  A. Stukalov,et al.  The alternative cap-binding complex is required for antiviral defense in vivo , 2019, PLoS pathogens.

[14]  N. Wu,et al.  Retinoblastoma binding protein 4 represses HIV-1 long terminal repeat-mediated transcription by recruiting NR2F1 and histone deacetylase. , 2019, Acta biochimica et biophysica Sinica.

[15]  Rosa M. Badia,et al.  Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations , 2019, PLoS pathogens.

[16]  Miklós Emri,et al.  Analysis of networks of host proteins in the early time points following HIV transduction , 2019, BMC Bioinformatics.

[17]  M. Tremblay,et al.  Host mRNA decay proteins influence HIV-1 replication and viral gene expression in primary monocyte-derived macrophages , 2019, Retrovirology.

[18]  A. Abate,et al.  Microfluidic bead encapsulation above 20 kHz with triggered drop formation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8lc00514a , 2018, Lab on a chip.

[19]  M. Nussenzweig,et al.  Clonal CD4+ T cells in the HIV-1 latent reservoir display a distinct gene profile upon reactivation , 2018, Nature Medicine.

[20]  J. Wong,et al.  HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing , 2018, Science Translational Medicine.

[21]  W. Paxton,et al.  Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals , 2018, Front. Immunol..

[22]  Astrid Gall,et al.  Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver , 2018, Virus evolution.

[23]  E. Boritz,et al.  Identification of Genetically Intact HIV-1 Proviruses in Specific CD4+ T Cells from Effectively Treated Participants. , 2017, Cell reports.

[24]  Nancie M Archin,et al.  Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency , 2017, The Journal of clinical investigation.

[25]  E. Rosenberg,et al.  Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells , 2017, The Journal of clinical investigation.

[26]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[27]  B. Walker,et al.  Single-Cell Characterization of Viral Translation-Competent Reservoirs in HIV-Infected Individuals. , 2016, Cell host & microbe.

[28]  S. Hughes,et al.  Multiple Origins of Virus Persistence during Natural Control of HIV Infection , 2016, Cell.

[29]  G. Pantaleo,et al.  PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals , 2016, Nature Medicine.

[30]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[31]  M. Altfeld,et al.  Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes , 2015, PLoS pathogens.

[32]  S. Gordon,et al.  G3BP1 restricts HIV-1 replication in macrophages and T-cells by sequestering viral RNA. , 2015, Virology.

[33]  Rebecca Hoh,et al.  Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. , 2015, The lancet. HIV.

[34]  G. Pantaleo,et al.  The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo , 2015, PLoS pathogens.

[35]  D. Hazuda,et al.  A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals , 2015, EBioMedicine.

[36]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[37]  Sarah Palmer,et al.  Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. , 2014, The lancet. HIV.

[38]  Joakim Lundeberg,et al.  Sequencing Degraded RNA Addressed by 3' Tag Counting , 2014, PloS one.

[39]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[40]  Sarah B. Laskey,et al.  Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure , 2013, Cell.

[41]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[42]  Nan Li,et al.  LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition , 2013, Nature Communications.

[43]  Xin Zhou,et al.  Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. , 2013, Virology.

[44]  E. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[45]  T. Chun,et al.  Effect of histone deacetylase inhibitors on HIV production in latently infected, resting CD4(+) T cells from infected individuals receiving effective antiretroviral therapy. , 2012, The Journal of infectious diseases.

[46]  J. Eron,et al.  Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy , 2012, Nature.

[47]  T. Ludwig,et al.  Contact-Dependent T Cell Activation and T Cell Stopping Require Talin1 , 2011, The Journal of Immunology.

[48]  C. B. Hare,et al.  Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. , 2010, The Journal of infectious diseases.

[49]  J. Routy,et al.  Peripheral Blood CCR4+CCR6+ and CXCR3+CCR6+ CD4+ T Cells Are Highly Permissive to HIV-1 Infection , 2009, The Journal of Immunology.

[50]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[51]  Geneviève Boucher,et al.  HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation , 2009, Nature Medicine.

[52]  N. Hogg,et al.  Guanine nucleotide-binding proteins of the G12 family shape immune functions by controlling CD4+ T cell adhesiveness and motility. , 2009, Immunity.

[53]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[54]  I. Sadowski,et al.  Specific interaction of TFII‐I with an upstream element on the HIV‐1 LTR regulates induction of latent provirus , 2008, FEBS letters.

[55]  E. Paskaleva,et al.  BCL11B is a general transcriptional repressor of the HIV-1 long terminal repeat in T lymphocytes through recruitment of the NuRD complex. , 2008, Virology.

[56]  B. Berkhout,et al.  Highly Sensitive Methods Based on Seminested Real-Time Reverse Transcription-PCR for Quantitation of Human Immunodeficiency Virus Type 1 Unspliced and Multiply Spliced RNA and Proviral DNA , 2008, Journal of Clinical Microbiology.

[57]  L. Davis,et al.  Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. , 2008, Immunity.

[58]  D. Price,et al.  Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR , 2007, Nucleic acids research.

[59]  Qiang Zhou,et al.  Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription , 2007, Nucleic acids research.

[60]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Loni Pickle,et al.  A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. , 2005, Genes & development.

[62]  Mario Roederer,et al.  T-Cell Subsets That Harbor Human Immunodeficiency Virus (HIV) In Vivo: Implications for HIV Pathogenesis , 2004, Journal of Virology.

[63]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[64]  E. Verdin,et al.  HIV reproducibly establishes a latent infection after acute infection of T cells in vitro , 2003, The EMBO journal.

[65]  Z. Grossman,et al.  HIV preferentially infects HIV-specific CD4+ T cells , 2002, Nature.

[66]  A. Rice,et al.  Induction of TAK (Cyclin T1/P-TEFb) in Purified Resting CD4+ T Lymphocytes by Combination of Cytokines , 2001, Journal of Virology.

[67]  J. Steitz,et al.  Communication of the Position of Exon-Exon Junctions to the mRNA Surveillance Machinery by the Protein RNPS1 , 2001, Science.

[68]  D. Gabuzda,et al.  ERK MAP Kinase Links Cytokine Signals to Activation of Latent HIV-1 Infection by Stimulating a Cooperative Interaction of AP-1 and NF-κB* , 1999, The Journal of Biological Chemistry.

[69]  D. Richman,et al.  Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. , 1997, Science.

[70]  R Brookmeyer,et al.  Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. , 1997, Science.

[71]  G. Nolan,et al.  The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. , 1997, Immunity.

[72]  C. Van Lint,et al.  Transcriptional activation and chromatin remodeling of the HIV‐1 promoter in response to histone acetylation. , 1996, The EMBO journal.

[73]  G. Nabel,et al.  An inducible transcription factor activates expression of human immunodeficiency virus in T cells , 1987, Nature.

[74]  A. Abate,et al.  Rapid Encapsulation of Cell and Polymer Solutions with Bubble‐Triggered Droplet Generation , 2017 .

[75]  Alberto Bosque,et al.  Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. , 2009, Blood.