Comb Peculiarities of Dispersion-Managed Solitons in a Hybrid Mode-Locked All-Fiber Ring Laser

We studied the optical comb peculiarities of the ultra-short dispersion-managed soliton generation in an erbium-doped all-fiber ring laser hybrid mode-locked with carbon:boron nitride single-walled nanotubes in the co-action with a nonlinear polarization evolution. A stable low-intensity-noise optical comb was obtained with a narrow single comb linewidth of 18.1 kHz based on dechirped 90-fs pulses with a repetition rate of 42.22 MHz, a spectral pulse width of 56 nm, and an average output power of 16.7 mW corresponding to 4.4-kW maximum peak power and 0.4-nJ pulse energy.

[1]  S. Kelly,et al.  Characteristic sideband instability of periodically amplified average soliton , 1992 .

[2]  Hermann A. Haus,et al.  Soliton versus nonsoliton operation of fiber ring lasers , 1994 .

[3]  E. Dianov,et al.  Performance peculiarities of carbon-nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking , 2016 .

[4]  Valeriy E. Karasik,et al.  Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer , 2015 .

[5]  Characterization of a SESAM mode-locked erbium fiber laser frequency comb with an integrated electro-optic modulator , 2014, 2014 European Frequency and Time Forum (EFTF).

[6]  V. Khopin,et al.  Efficient source of femtosecond pulses and its use for broadband supercontinuum generation , 2005 .

[7]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[8]  H. Takesue,et al.  Quantum teleportation over 100 km of fiber using highly-efficient superconducting nanowire single photon detectors , 2015, 1510.00476.

[9]  F. Benabid,et al.  Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber. , 2014, Optics express.

[10]  E. Dianov,et al.  177fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes , 2008 .

[11]  Hiroyuki Yokoyama,et al.  Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source. , 2007, Journal of biomedical optics.

[12]  F. Torrisi,et al.  Sub 200 fs pulse generation from a graphene mode-locked fiber laser , 2010, 1010.1329.

[13]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[14]  Ultra-fast heralded single photon source based on telecom technology and non-linear optics , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[15]  Alexey Pnev,et al.  Stable Similariton Generation in an All-Fiber Hybrid Mode-Locked Ring Laser for Frequency Metrology , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[16]  Sergei K. Turitsyn,et al.  Dispersion-managed solitons in fibre systems and lasers , 2012 .

[17]  Jianping Chen,et al.  41.9  fs hybridly mode-locked Er-doped fiber laser at 212  MHz repetition rate. , 2014, Optics letters.

[18]  Shigeki Takeuchi,et al.  Recent progress in single-photon and entangled-photon generation and applications , 2014 .

[19]  Xiang Zhang,et al.  High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking. , 2016, Applied optics.

[20]  Zheng Zheng,et al.  Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. , 2016, Optics express.

[21]  O. Stéphan,et al.  Incorporation of boron and nitrogen in carbon nanomaterials and its influence on their structure and opto-electronical properties , 2012 .

[22]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[23]  Young-Jin Kim,et al.  Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power. , 2012, Optics express.

[24]  Alexey B Pnev,et al.  High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator. , 2015, Optics express.

[25]  D. Tang,et al.  Soliton modulation instability in fiber lasers , 2009 .

[26]  R. Holzwarth,et al.  Characterizing a fiber-based frequency comb with electro-optic modulator , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  N. Newbury,et al.  Response dynamics of the frequency comb output from a femtosecond fiber laser. , 2005, Optics express.

[28]  Zhongyuan Sun,et al.  Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating. , 2014, Optics express.

[29]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Yishan Wang,et al.  A phase-stabilized carbon nanotube fiber laser frequency comb. , 2009, Optics express.

[31]  Xiaoxiang Han,et al.  Nanotube-Mode-Locked Fiber Laser Delivering Dispersion-Managed or Dissipative Solitons , 2014, Journal of Lightwave Technology.

[32]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[33]  Sergei K. Turitsyn,et al.  Carbon nanotubes for ultrafast fibre lasers , 2016 .

[34]  Arseniy A. Gavdush,et al.  Accuracy of sample material parameters reconstruction using terahertz pulsed spectroscopy , 2014 .

[35]  P. G. Kryukov,et al.  Femtosecond Er3+ fiber laser for application in an optical clock , 2007 .