Ultra-broadband semiconductor laser

The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort pulse excitation. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared ‘supercontinuum’ semiconductor laser that has none of these drawbacks. We adopt a quantum cascade configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 µm wavelength. Laser action with a Fabry–Pérot spectrum covering all wavelengths from 6 to 8 µm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications or ultra-precision metrology and spectroscopy.

[1]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[2]  A. Cameron,et al.  Some Properties of r-Process Accretion Disks and Jets , 2001 .

[3]  L. The,et al.  Molybdenum and Zirconium Isotopes from a Supernova Neutron Burst , 2000 .

[4]  E. Anders,et al.  Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite , 1993 .

[5]  G. Wasserburg,et al.  Absolute isotopic abundances of Ti in meteorites , 1985 .

[6]  L. Nittler,et al.  Meteoritic oxide grain from supernova found , 1998, Nature.

[7]  F. Capasso Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices , 1987, Science.

[8]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[9]  C. Alexander Trace element contents of chondrule rims and interchondrule matrix in ordinary chondrites , 1995 .

[10]  M. Sigrist Air monitoring by spectroscopic techniques , 1994 .

[11]  I. Tomov,et al.  Two-wavelength operation of a femtosecond ring dye laser , 1990 .

[12]  Evidence of Multiple r-Process Sites in the Early Galaxy: New Observations of CS 22892-052. , 2000, The Astrophysical journal.

[13]  G. Wasserburg,et al.  Abundances of Actinides and Short-lived Nonactinides in the Interstellar Medium: Diverse Supernova Sources for the r-Processes , 1996 .

[14]  A. Yariv,et al.  Broadband Tunability of Gain-Flattened Quantum-Well Semiconductor Lasers with an External Grating , 1989 .

[15]  J. Faist,et al.  Quantum cascade laser with plasmon‐enhanced waveguide operating at 8.4 μm wavelength , 1995 .

[16]  Alfred Y. Cho,et al.  Molecular Beam Epitaxy , 2003 .

[17]  G. Wasserburg,et al.  More anomalies from the Allende meteorite - Samarium , 1978 .

[18]  F. Capasso,et al.  Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation , 2001 .

[19]  J. Faist,et al.  High power mid‐infrared (λ∼5 μm) quantum cascade lasers operating above room temperature , 1996 .

[20]  M. Panish Molecular-beam epitaxy , 1989, AT&T Technical Journal.

[21]  A. Boss,et al.  The Early Evolution of the Inner Solar System: A Meteoritic Perspective , 2001, Science.

[22]  F. Capasso,et al.  Quantum cascade lasers , 1997, Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505).

[23]  B. Marty,et al.  Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula , 2001, astro-ph/0109549.

[24]  S. H. Withers,et al.  Broad band p-Ge optical amplifier of terahertz radiation , 1999 .

[25]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[26]  Arthur E Champagne,et al.  Synthesis of the elements in stars: forty years of progress , 1997 .

[27]  J. Birck,et al.  Clues to early Solar System history from chromium isotopes in carbonaceous chondrites , 1992, Nature.

[28]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[29]  A. Gossard,et al.  Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths , 1996 .

[30]  F. Krausz,et al.  Ultrabroadband femtosecond lasers , 1994 .

[31]  N. Holonyak,et al.  Broadband long-wavelength operation (9700 Å≳λ≳8700 Å) of AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure lasers in an external grating cavity , 1989 .

[32]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[33]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[34]  L. Boivin,et al.  A 1021 channel WDM system , 2000 .

[35]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[36]  J R Taylor,et al.  Supercontinuum self-Q-switched ytterbium fiber laser. , 1997, Optics letters.