Molecular signatures of G-protein-coupled receptors

[1]  S. Opella,et al.  Structure of the Chemokine Receptor CXCR1 in Phospholipid Bilayers , 2012, Nature.

[2]  R. Pappu,et al.  Versatility from Protein Disorder , 2012, Science.

[3]  J. Shiloach,et al.  Structure of the agonist-bound neurotensin receptor , 2012, Nature.

[4]  T. Shimamura [Structure of histamine H1 receptor]. , 2012, Seikagaku. The Journal of Japanese Biochemical Society.

[5]  C. Tate,et al.  Agonist-bound structures of G protein-coupled receptors. , 2012, Current opinion in structural biology.

[6]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[7]  Andreas Plückthun,et al.  Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations , 2012, Proceedings of the National Academy of Sciences.

[8]  Christopher G. Tate,et al.  Crystal Structures of a Stabilized β1-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol , 2012, Structure.

[9]  Aashish Manglik,et al.  Structure of the δ-opioid receptor bound to naltrindole , 2012, Nature.

[10]  Eric Trinquet,et al.  Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy , 2012, Proceedings of the National Academy of Sciences.

[11]  Bryan L. Roth,et al.  Structure of the Nociceptin/Orphanin FQ Receptor in Complex with a Peptide Mimetic , 2012, Nature.

[12]  X. Deupí,et al.  Conserved activation pathways in G-protein-coupled receptors. , 2012, Biochemical Society transactions.

[13]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[14]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[15]  Albert C. Pan,et al.  Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor , 2012, Nature.

[16]  Hugh Rosen,et al.  Crystal Structure of a Lipid G Protein–Coupled Receptor , 2012, Science.

[17]  Bryan L. Roth,et al.  Structure of the human kappa opioid receptor in complex with JDTic , 2012, Nature.

[18]  T. Südhof,et al.  A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis , 2012, The EMBO journal.

[19]  S. Karnik,et al.  Domain coupling in GPCRs: the engine for induced conformational changes. , 2012, Trends in pharmacological sciences.

[20]  P. Sexton,et al.  The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. , 2012, Annual review of pharmacology and toxicology.

[21]  Jonathan S. Mason,et al.  Discovery of 1,2,4-Triazine Derivatives as Adenosine A2A Antagonists using Structure Based Drug Design , 2012, Journal of medicinal chemistry.

[22]  A. Kruse,et al.  Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist , 2011, Nature.

[23]  S. Iwata,et al.  G protein-coupled receptor inactivation by an allosteric inverse-agonist antibody , 2011, Nature.

[24]  J. Simms,et al.  Lifting the lid on GPCRs: the role of extracellular loops , 2011, British journal of pharmacology.

[25]  R. Stevens,et al.  Structure of the human k-opioid receptor in complex with JDTic , 2012 .

[26]  Ron O. Dror,et al.  High-resolution crystal structure of human Protease-Activated Receptor 1 bound to the antagonist vorapaxar , 2012, Nature.

[27]  D. Herr Potential use of G protein-coupled receptor-blocking monoclonal antibodies as therapeutic agents for cancers. , 2012, International review of cell and molecular biology.

[28]  R. Pappu,et al.  Structural biology. Versatility from protein disorder. , 2012, Science.

[29]  Vadim Cherezov,et al.  Diversity and modularity of G protein-coupled receptor structures. , 2012, Trends in pharmacological sciences.

[30]  Xavier Deupi,et al.  Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II , 2011, Proceedings of the National Academy of Sciences.

[31]  Andrew Chatr-aryamontri,et al.  Structural and functional protein network analyses predict novel signaling functions for rhodopsin , 2011, Molecular systems biology.

[32]  W E Moerner,et al.  Conformational dynamics of single G protein-coupled receptors in solution. , 2011, The journal of physical chemistry. B.

[33]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[34]  M. J. Chalmers,et al.  Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. , 2011, Structure.

[35]  Kunhong Xiao,et al.  Multiple ligand-specific conformations of the β2-adrenergic receptor. , 2011, Nature chemical biology.

[36]  Davide Provasi,et al.  Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques , 2011, PLoS Comput. Biol..

[37]  Virgil L. Woods,et al.  Conformational changes in the G protein Gs induced by the β2 adrenergic receptor , 2011, Nature.

[38]  M. Congreve,et al.  Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. , 2011, Structure.

[39]  Leonardo Pardo,et al.  Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors , 2011, PloS one.

[40]  Ryan T. Strachan,et al.  Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin , 2011, Science Signaling.

[41]  M. Bünemann,et al.  A Polymorphism-Specific “Memory” Mechanism in the β2-Adrenergic Receptor , 2011, Science Signaling.

[42]  Xavier Deupi,et al.  Structural insights into agonist-induced activation of G-protein-coupled receptors. , 2011, Current opinion in structural biology.

[43]  Albert C. Pan,et al.  Pathway and mechanism of drug binding to G-protein-coupled receptors , 2011, Proceedings of the National Academy of Sciences.

[44]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[45]  T. Huber,et al.  Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. , 2011, Trends in pharmacological sciences.

[46]  N. Lambert,et al.  Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers , 2011, Nature chemical biology.

[47]  Jonathan S. Mason,et al.  Progress in Structure Based Drug Design for G Protein-Coupled Receptors , 2011, Journal of medicinal chemistry.

[48]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[49]  Gebhard F. X. Schertler,et al.  Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[50]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[51]  Gebhard F. X. Schertler,et al.  The structural basis of agonist-induced activation in constitutively active rhodopsin , 2011, Nature.

[52]  Oliver P. Ernst,et al.  Crystal structure of metarhodopsin II , 2011, Nature.

[53]  T. Dinan,et al.  Exciting Times beyond the Brain: Metabotropic Glutamate Receptors in Peripheral and Non-Neural Tissues , 2011, Pharmacological Reviews.

[54]  Saskia Nijmeijer,et al.  A Structural Insight into the Reorientation of Transmembrane Domains 3 and 5 during Family A G Protein-Coupled Receptor Activation , 2011, Molecular Pharmacology.

[55]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[56]  Cheng Zhang,et al.  Structure and Function of an Irreversible Agonist-β2 Adrenoceptor complex , 2010, Nature.

[57]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[58]  T. Kenakin,et al.  The role of conformational ensembles of seven transmembrane receptors in functional selectivity. , 2010, Current opinion in pharmacology.

[59]  T. Schwartz,et al.  The minor binding pocket: a major player in 7TM receptor activation. , 2010, Trends in pharmacological sciences.

[60]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[61]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[62]  Daniel Picot,et al.  Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins , 2010, Nature Methods.

[63]  Keshava Rajagopal,et al.  Teaching old receptors new tricks: biasing seven-transmembrane receptors , 2010, Nature Reviews Drug Discovery.

[64]  T. Sakmar,et al.  Tracking G-protein-coupled receptor activation using genetically encoded infrared probes , 2010, Nature.

[65]  Tod D Romo,et al.  A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor* , 2010, The Journal of Biological Chemistry.

[66]  L. Pardo,et al.  Ligand-specific regulation of the extracellular surface of a G protein coupled receptor , 2009, Nature.

[67]  P. Scheerer,et al.  A G protein-coupled receptor at work: the rhodopsin model. , 2009, Trends in biochemical sciences.

[68]  C. Tate,et al.  Engineering G protein-coupled receptors to facilitate their structure determination. , 2009, Current opinion in structural biology.

[69]  G. Winter,et al.  Phage-encoded combinatorial chemical libraries based on bicyclic peptides. , 2009, Nature chemical biology.

[70]  R. Rudolph,et al.  Passing the baton in class B GPCRs: peptide hormone activation via helix induction? , 2009, Trends in biochemical sciences.

[71]  S. Rasmussen,et al.  The structure and function of G-protein-coupled receptors , 2009, Nature.

[72]  Irina S. Moreira,et al.  Allosteric communication between protomers of dopamine Class A GPCR dimers modulates activation , 2009, Nature chemical biology.

[73]  M. Caffrey Crystallizing membrane proteins for structure determination: use of lipidic mesophases. , 2009, Annual review of biophysics.

[74]  H. Khorana,et al.  Location of the Retinal Chromophore in the Activated State of Rhodopsin* , 2009, Journal of Biological Chemistry.

[75]  D Baker,et al.  Prediction of membrane protein structures with complex topologies using limited constraints , 2009, Proceedings of the National Academy of Sciences.

[76]  M. Babu,et al.  The rules of disorder or why disorder rules. , 2009, Progress in biophysics and molecular biology.

[77]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[78]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[79]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[80]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[81]  C. Altenbach,et al.  High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation , 2008, Proceedings of the National Academy of Sciences.

[82]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[83]  H. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[84]  Gebhard F. X. Schertler,et al.  Protein crystallography with a micrometre-sized synchrotron-radiation beam , 2008, Acta crystallographica. Section D, Biological crystallography.

[85]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[86]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[87]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[88]  Terry Kenakin,et al.  Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. , 2007, Trends in pharmacological sciences.

[89]  Richard N. Zare,et al.  A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein , 2007, Proceedings of the National Academy of Sciences.

[90]  R. Stevens,et al.  High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. , 2007, Science.

[91]  A. Goldman,et al.  G protein-coupled receptors show unusual patterns of intrinsic unfolding. , 2005, Protein engineering, design & selection : PEDS.

[92]  O. Lichtarge,et al.  Evolutionary Trace of G Protein-coupled Receptors Reveals Clusters of Residues That Determine Global and Class-specific Functions* , 2004, Journal of Biological Chemistry.

[93]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[94]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[95]  Gürol M. Süel,et al.  Evolutionarily conserved networks of residues mediate allosteric communication in proteins , 2003, Nature Structural Biology.

[96]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[97]  P Ghanouni,et al.  Functionally Different Agonists Induce Distinct Conformations in the G Protein Coupling Domain of the β2Adrenergic Receptor* , 2001, The Journal of Biological Chemistry.

[98]  J. Chambers,et al.  A G Protein-coupled Receptor for UDP-glucose* , 2000, The Journal of Biological Chemistry.

[99]  C. Guenet,et al.  Site-directed mutagenesis of the putative human muscarinic M2 receptor binding site. , 1999, European journal of pharmacology.

[100]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[101]  O. Lichtarge,et al.  Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F , 1996, Nature.

[102]  M. Bouvier,et al.  Mutation of tyrosine‐141 inhibits insulin‐promoted tyrosine phosphorylation and increased responsiveness of the human beta 2‐adrenergic receptor. , 1995, The EMBO journal.

[103]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[104]  R. Lefkowitz,et al.  A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. , 1993, The Journal of biological chemistry.