Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact

[1]  Huajian Gao,et al.  On optimal hierarchy of load-bearing biological materials , 2011, Proceedings of the Royal Society B: Biological Sciences.

[2]  Hui Zhang,et al.  Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations , 2014 .

[3]  Ashkan Vaziri,et al.  Metal sandwich plates subject to intense air shocks , 2007 .

[4]  A. Vaziri,et al.  Adhesively bonded lap joints with extreme interface geometry , 2014 .

[5]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[6]  Vikram Deshpande,et al.  Hierarchical Corrugated Core Sandwich Panel Concepts , 2007 .

[7]  M. Attia,et al.  Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns , 2012 .

[8]  Julio F. Davalos,et al.  Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications , 2001 .

[9]  Qing Li,et al.  Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria , 2007 .

[10]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[11]  Leon Mishnaevsky,et al.  3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers , 2009 .

[12]  N. Fleck,et al.  The Through-Thickness Compressive Strength of a Composite Sandwich Panel With a Hierarchical Square Honeycomb Sandwich Core , 2009 .

[13]  Jim Papadopoulos,et al.  Plastic collapse of lattice structures under a general stress state , 2014 .

[14]  M. Hoffman,et al.  Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression , 2009 .

[15]  Jeffrey R Morgan,et al.  Directed self-assembly of large scaffold-free multi-cellular honeycomb structures , 2011, Biofabrication.

[16]  Constantinos Soutis,et al.  The localized low-velocity impact response of aluminium honeycombs and sandwich panels for occupant head protection: experimental characterization and analytical modelling , 2007 .

[17]  Qing Li,et al.  Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness , 2014 .

[18]  Wei Li,et al.  Multiobjective optimization of multi-cell sections for the crashworthiness design , 2008 .

[19]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[20]  Hui Zhang,et al.  Energy absorption of multi-cell stub columns under axial compression , 2013 .

[21]  Hui Zhang,et al.  Numerical and theoretical studies on energy absorption of three-panel angle elements , 2012 .

[22]  Tomasz Wierzbicki,et al.  Crushing analysis of metal honeycombs , 1983 .

[23]  Yong Wang,et al.  Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. , 2007, Materials science & engineering. A, Structural materials : properties, microstructure and processing.

[24]  Daining Fang,et al.  Mechanical properties of hierarchical cellular materials. Part I: Analysis , 2008 .

[25]  J. Papadopoulos,et al.  Self-similar hierarchical honeycombs , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  T. Lu,et al.  Thermal transport and fire retardance properties of cellular aluminium alloys , 1999 .

[27]  M. Yamashita,et al.  Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment , 2005 .

[28]  Mc Farland,et al.  HEXAGONAL CELL STRUCTURES UNDER POST-BUCKLING AXIAL LOAD , 1963 .

[29]  O. Hopperstad,et al.  Static and dynamic axial crushing of square thin-walled aluminium extrusions , 1996 .

[30]  W. E. Baker,et al.  Static and dynamic properties of high-density metal honeycombs , 1998 .

[31]  Guoxing Lu,et al.  Compressive behaviour of closed-cell aluminium foams at high strain rates , 2010 .

[32]  T. Wierzbicki,et al.  Experimental and numerical studies of foam-filled sections , 2000 .

[33]  H. Nayeb-Hashemi,et al.  Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures , 2011 .

[34]  Hui Zhang,et al.  Theoretical and numerical investigation on the crush resistance of rhombic and kagome honeycombs , 2013 .

[35]  Abdel Magid Hamouda,et al.  Mechanics of anisotropic hierarchical honeycombs , 2014 .

[36]  Guangyao Li,et al.  Crushing analysis and multiobjective optimization for functionally graded foam-filled tubes under multiple load cases , 2014 .

[37]  A. Hiltner,et al.  Hierarchical structure in polymeric materials. , 1987, Science.

[38]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[39]  David P. Thambiratnam,et al.  Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading , 2009 .

[40]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[41]  John H. Beynon,et al.  Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs , 2012 .

[42]  O. Hopperstad,et al.  Experimental investigations on the behaviour of short to long square aluminium tubes subjected to axial loading , 2004 .

[43]  J. Papadopoulos,et al.  Hierarchical honeycombs with tailorable properties , 2012 .

[44]  Tongxi Yu,et al.  In-plane dynamic crushing of honeycombs : a finite element study , 2003 .

[45]  Qing Li,et al.  A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials , 2010 .

[46]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.