P2Y1 Receptor Activation Enhances the Rate of Rat Pinealocyte-Induced Extracellular Acidification via a Calcium-Dependent Mechanism

Pineal gland G-protein coupled P2Y<sub>1</sub> receptors potentiate noradrenaline-induced N′-acetylserotonin production, a long term response which occurs after 5 h incubation. In the current study we show that a short-term effect of stimulation of P2Y<sub>1</sub> receptors is the increase in extracellular acidification rate (ECAR), which is mediated by an increase in intracellular calcium concentration ([Ca<sup>2+</sup>]<sub>i</sub>). The pD<sub>2</sub> values for ATP (3.06 ± 0.12)-induced ECAR increase was significantly smaller (p < 0.01) than that for ADP (3.64 ± 0.18), 2MeSATP (3.56 ± 0.02) and 2MeSADP (3.65 ± 0.13). The selective P2Y<sub>1</sub> receptor antagonists A3′P-5′P and A3′P-5′PS inhibited the increase in ECAR-induced by ADP. Clamping [Ca<sup>2+</sup>]<sub>i</sub> with BAPTA (30 and 50 µmol/l) led to inhibition of ADP-induced increase in ECAR. Agonist and antagonist data indicate P2Y<sub>1</sub> activation leads to a [Ca<sup>2+</sup>]<sub>i</sub>-dependent acidification of the extracellular medium.

[1]  J. A. Kappers,et al.  The development, topographical relations and innervation of the epiphysis cerebri in the albino rat , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[2]  H. Coleman,et al.  How important is stimulation of α‐adrenoceptors for melatonin production in rat pineal glands? , 2002, Journal of pineal research.

[3]  R. Czajkowski,et al.  ADP‐evoked phospholipase C stimulation and adenylyl cyclase inhibition in glioma C6 cells occur through two distinct nucleotide receptors, P2Y1 and P2Y12 , 2002, FEBS letters.

[4]  R. Markus,et al.  Characterisation of P2Y(1)-like receptor in cultured rat pineal glands. , 2001, European journal of pharmacology.

[5]  David Julius,et al.  Identification of the platelet ADP receptor targeted by antithrombotic drugs , 2001, Nature.

[6]  R. Markus,et al.  Purinergic and noradrenergic cotransmission in the rat pineal gland. , 2000, European journal of pharmacology.

[7]  J. Seelig,et al.  New Drugs for the Na+/H+ Exchanger. Influence of Na+ Concentration and Determination of Inhibition Constants with a Microphysiometer , 1999, Journal of Membrane Biology.

[8]  G Burnstock,et al.  Receptors for purines and pyrimidines. , 1998, Pharmacological reviews.

[9]  T. K. Harden,et al.  Identification of competitive antagonists of the P2Y1 receptor. , 1996, Molecular pharmacology.

[10]  C. Kennedy,et al.  Purinergic cotransmission: sympathetic nerves , 1996 .

[11]  J. Cipolla-Neto,et al.  Presence of P2‐purinoceptors in the rat pineal gland , 1994, British journal of pharmacology.

[12]  J. W. Parce,et al.  The cytosensor microphysiometer: biological applications of silicon technology. , 1992, Science.

[13]  D. Klein,et al.  Evidence of alpha 1-adrenergic----protein kinase C----Na+/H+ antiporter-dependent increase in pinealocyte intracellular pH. Role in the adrenergic stimulation of cGMP accumulation. , 1989, The Journal of biological chemistry.

[14]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[15]  D. Klein,et al.  Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Klein,et al.  Postsynaptic a-adrenergic receptors potentiate the ,8-adrenergic stimulation of pineal serotonin N-acetyltransferase , 2022 .