Quantum Machine Learning: What Quantum Computing Means to Data Mining

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it ...

[1]  Ran El-Yaniv,et al.  Transductive Rademacher Complexity and Its Applications , 2007, COLT.

[2]  A. Young,et al.  First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.

[3]  Yiming Yang,et al.  An example-based mapping method for text categorization and retrieval , 1994, TOIS.

[4]  C. Lee Giles,et al.  Nonconvex Online Support Vector Machines , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[6]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[7]  Rudolf Sollacher,et al.  Quantum pattern recognition with liquid-state nuclear magnetic resonance , 2008, 0802.1592.

[8]  C. Trugenberger Probabilistic quantum memories. , 2000, Physical review letters.

[9]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[10]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[11]  Qiulin Ding,et al.  Quantum Pattern Recognition with Probability of 100% , 2008 .

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[13]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[14]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[15]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[16]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[17]  Rocco A. Servedio,et al.  Equivalences and Separations Between Quantum and Classical Learnability , 2004, SIAM J. Comput..

[18]  Michel Verleysen,et al.  Nonlinear data projection on non-Euclidean manifolds with controlled trade-off between trustworthiness and continuity , 2009, Neurocomputing.

[19]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[21]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[22]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[23]  I. Jolliffe Principal Component Analysis , 2002 .

[24]  Mohammed J. Zaki Data Mining and Analysis: Fundamental Concepts and Algorithms , 2014 .

[25]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[26]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[27]  Hans-Peter Kriegel,et al.  Density‐based clustering , 2011, WIREs Data Mining Knowl. Discov..

[28]  David Horn,et al.  Dynamic quantum clustering: a method for visual exploration of structures in data , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[30]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[31]  Hae-Sang Park,et al.  A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..

[32]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[33]  Huimin Liu,et al.  Quantum clustering-based weighted linear programming support vector regression for multivariable nonlinear problem , 2010, Soft Comput..

[34]  Nuno Vasconcelos,et al.  On the Design of Loss Functions for Classification: theory, robustness to outliers, and SavageBoost , 2008, NIPS.

[35]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[36]  Dan Ventura,et al.  Quantum Neural Networks , 2000 .

[37]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[38]  Bernhard Schölkopf,et al.  The connection between regularization operators and support vector kernels , 1998, Neural Networks.

[39]  Giacomo Mauro D'Ariano,et al.  Imprinting complete information about a quantum channel on its output state. , 2003, Physical review letters.

[40]  Jian Su,et al.  Supervised and Traditional Term Weighting Methods for Automatic Text Categorization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Alexander Gammerman,et al.  Learning by Transduction , 1998, UAI.

[42]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[43]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[44]  Tzyh Jong Tarn,et al.  Quantum Reinforcement Learning , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[45]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[46]  D. Leung,et al.  Choi’s proof as a recipe for quantum process tomography , 2003 .

[47]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[48]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[49]  Rocco A. Servedio,et al.  Random classification noise defeats all convex potential boosters , 2008, ICML '08.

[50]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[51]  Rocco A. Servedio,et al.  Quantum versus classical learnability , 2000, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[52]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[53]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[54]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[55]  Jerome R Busemeyer,et al.  Can quantum probability provide a new direction for cognitive modeling? , 2013, The Behavioral and brain sciences.

[56]  Horst Bischof,et al.  Associative Memory Based Image and Object Recognition by Quantum Holography , 2004, Open Syst. Inf. Dyn..

[57]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[58]  Hongjun Lu,et al.  Effective Data Mining Using Neural Networks , 1996, IEEE Trans. Knowl. Data Eng..

[59]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[60]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[61]  A. Acin,et al.  Optimal estimation of quantum dynamics , 2001 .

[62]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[63]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.

[64]  Sanjay Gupta,et al.  Quantum Neural Networks , 2001, J. Comput. Syst. Sci..

[65]  Tony R. Martinez,et al.  Quantum associative memory , 2000, Inf. Sci..

[66]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[67]  Rocco A. Servedio,et al.  Improved Bounds on Quantum Learning Algorithms , 2004, Quantum Inf. Process..

[68]  W. Munro,et al.  Quantum analogue computing , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  Peter Wittek,et al.  High-performance dynamic quantum clustering on graphics processors , 2013, J. Comput. Phys..

[70]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[71]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[72]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[73]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[74]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[75]  Guang-Bin Huang,et al.  Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions , 1998, IEEE Trans. Neural Networks.

[76]  J. E. Avron,et al.  Adiabatic Theorem without a Gap Condition , 1999 .

[77]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[78]  V. Choi,et al.  First-order quantum phase transition in adiabatic quantum computation , 2009, 0904.1387.

[79]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[80]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[81]  Paul S. Bradley,et al.  Refining Initial Points for K-Means Clustering , 1998, ICML.

[82]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[83]  M. Altaisky Quantum neural network , 2001 .

[84]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[85]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[86]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[87]  Jiawei Han,et al.  Classifying large data sets using SVMs with hierarchical clusters , 2003, KDD '03.

[88]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[89]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[90]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[91]  Gilles Brassard,et al.  Quantum speed-up for unsupervised learning , 2012, Machine Learning.

[92]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[93]  Ajit Narayanan,et al.  Quantum artificial neural network architectures and components , 2000, Inf. Sci..

[94]  Elizabeth C. Behrman,et al.  Simulations of quantum neural networks , 2000, Inf. Sci..

[95]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[96]  Gunnar Rätsch,et al.  Soft Margins for AdaBoost , 2001, Machine Learning.

[97]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[98]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[99]  G. D’Ariano,et al.  Optimal quantum learning of a unitary transformation , 2009, 0903.0543.

[100]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[101]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[102]  Gintaras Palubeckis,et al.  Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem , 2004, Ann. Oper. Res..

[103]  William Kruskal,et al.  Miracles and Statistics: The Casual Assumption of Independence , 1988 .

[104]  E. Gardner The space of interactions in neural network models , 1988 .

[105]  R. Feynman Simulating physics with computers , 1999 .

[106]  Liva Ralaivola,et al.  Learning SVMs from Sloppily Labeled Data , 2009, ICANN.

[107]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[108]  Madhav J. Nigam,et al.  Applications of quantum inspired computational intelligence: a survey , 2014, Artificial Intelligence Review.

[109]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[110]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[111]  Kengo Katayama,et al.  Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem , 2001, Eur. J. Oper. Res..

[112]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[113]  Kirsty Kitto,et al.  Why Quantum Theory , 2008 .

[114]  D. Angluin Queries and Concept Learning , 1988 .

[115]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[116]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[117]  Anil K. Jain,et al.  Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[118]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[119]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[120]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[121]  Edward Farhi,et al.  Quantum adiabatic algorithms, small gaps, and different paths , 2009, Quantum Inf. Comput..

[122]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[123]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[124]  Hongbin Zha,et al.  Riemannian Manifold Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[125]  Masahide Sasaki,et al.  Quantum learning and universal quantum matching machine , 2002 .

[126]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[127]  Giacomo Mauro D'Ariano,et al.  Quantum learning algorithms for quantum measurements , 2011 .

[128]  Rajat Raina,et al.  Large-scale deep unsupervised learning using graphics processors , 2009, ICML '09.

[129]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[130]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[131]  Pat Langley,et al.  Oblivious Decision Trees and Abstract Cases , 1994 .

[132]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[133]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[134]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[135]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[136]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[137]  Gopathy Purushothaman,et al.  Quantum neural networks (QNNs): inherently fuzzy feedforward neural networks , 1997, IEEE Trans. Neural Networks.

[138]  Hartmut Neven,et al.  QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization , 2012, ACML.

[139]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[140]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[141]  Anil K. Jain,et al.  Nonlinear Manifold Learning for Data Stream , 2004, SDM.

[142]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent in Function Space , 2007 .

[143]  W. Bruce Croft,et al.  Combining classifiers in text categorization , 1996, SIGIR '96.

[144]  Thomas Vidick,et al.  More nonlocality with less entanglement , 2010, 1011.5206.

[145]  Hiroshi Nakagawa,et al.  Quantum Annealing for Variational Bayes Inference , 2009, UAI.

[146]  Jorge S. Marques,et al.  Selecting Landmark Points for Sparse Manifold Learning , 2005, NIPS.

[147]  Ashish Kapoor,et al.  Quantum Nearest-Neighbor Algorithms for Machine Learning , 2014, 1401.2142.

[148]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[149]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[150]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[151]  Bin Yu,et al.  Boosting with early stopping: Convergence and consistency , 2005, math/0508276.

[152]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[153]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[154]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[155]  Bernard Widrow,et al.  The basic ideas in neural networks , 1994, CACM.

[156]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[157]  Pat Langley,et al.  Induction of One-Level Decision Trees , 1992, ML.

[158]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[159]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[160]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[161]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[162]  C. Trugenberger Phase transitions in quantum pattern recognition. , 2002, Physical review letters.

[163]  J. Copas Regression, Prediction and Shrinkage , 1983 .

[164]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[165]  Peter Wittek,et al.  Compactly Supported Basis Functions as Support Vector Kernels for Classification , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[166]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[167]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[168]  Thomas E. Potok,et al.  A flocking based algorithm for document clustering analysis , 2006, J. Syst. Archit..

[169]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[170]  David P. Helmbold,et al.  Potential Boosters? , 1999, NIPS.

[171]  Yoshua Bengio,et al.  Scaling learning algorithms towards AI , 2007 .

[172]  Hsuan-Tien Lin A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods , 2005 .

[173]  Gernot Schaller,et al.  General error estimate for adiabatic quantum computing , 2006 .

[174]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[175]  Ingo Steinwart,et al.  Sparseness of Support Vector Machines , 2003, J. Mach. Learn. Res..

[176]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[177]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[178]  Valerio Scarani Feats, Features and Failures of the PR‐box , 2006 .

[179]  Davide Anguita,et al.  Quantum optimization for training support vector machines , 2003, Neural Networks.

[180]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[181]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[182]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[183]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[184]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[185]  Dmitry Gavinsky Quantum predictive learning and communication complexity with single input , 2012, Quantum Inf. Comput..

[186]  Leonard Pitt,et al.  Sublinear time approximate clustering , 2001, SODA '01.

[187]  Rūsiņš Freivalds,et al.  A survey of quantum learning , 2003 .

[188]  D. Averin,et al.  Role of single-qubit decoherence time in adiabatic quantum computation , 2008, 0803.1196.

[189]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[190]  E. Bagan,et al.  Quantum learning without quantum memory , 2011, Scientific Reports.

[191]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[192]  G. Chiribella Group theoretic structures in the estimation of an unknown unitary transformation , 2011 .

[193]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[194]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[195]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[196]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[197]  Jason Weston,et al.  Trading convexity for scalability , 2006, ICML.

[198]  Prasad Raghavendra,et al.  Agnostic Learning of Monomials by Halfspaces Is Hard , 2012, SIAM J. Comput..

[199]  Wojciech Kotlowski,et al.  Quantum learning: asymptotically optimal classification of qubit states , 2010, 1004.2468.

[200]  Colin P. Williams,et al.  Quantum Neural Nets , 1998 .

[201]  Nuno Vasconcelos,et al.  On the design of robust classifiers for computer vision , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[202]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[203]  Li Zhang,et al.  Wavelet support vector machine , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[204]  A. Carlini,et al.  Quantum template matching , 2001 .

[205]  Isaac E. Lagaris,et al.  Newtonian clustering: An approach based on molecular dynamics and global optimization , 2007, Pattern Recognit..

[206]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[207]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[208]  Naresh Manwani,et al.  Noise Tolerance Under Risk Minimization , 2011, IEEE Transactions on Cybernetics.

[209]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[210]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[211]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.