Stochastic approximations to curve-shortening flows via particle systems

[1]  B. Andrews Non-Convergence and instability in the asymptotic behaviour of curves evolving by curvature , 2002 .

[2]  Kai-Seng Chou,et al.  The Curve Shortening Problem , 2001 .

[3]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[4]  Shigetoshi Yazaki,et al.  Convergence of a Crystalline Algorithm for the Motion of a Closed Convex Curve by a Power of Curvature V=Kα , 1999, SIAM J. Numer. Anal..

[5]  Ofer Zeitouni,et al.  Large deviations in the geometry of convex lattice polygons , 1999 .

[6]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[7]  Ben Andrews,et al.  Evolving convex curves , 1998 .

[8]  G. Sapiro,et al.  On the affine heat equation for non-convex curves , 1998 .

[9]  Mustapha Mourragui,et al.  Comportement hydrodynamique et entropie relative des processus de sauts, de naissances et de morts , 1996 .

[10]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[11]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[12]  Guillermo Sapiro,et al.  Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.

[13]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[14]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .