Projectagon-based reachability analysis for circuit-level formal verification

This dissertation presents a novel verification technique for analog and mixed sig- nal circuits. Analog circuits are widely used in many applications include con- sumer electronics, telecommunications, medical electronics. Furthermore, in deep sub-micron design, physical effects might undermine common digital abstractions of circuit behavior. Therefore, it is necessary to develop systematic methodologies to formally verify hardware design using circuit-level models. We present a formal method for circuit-level verification. Our approach is based on translating verification problems to reachability analysis problems. It applies nonlinear ODEs to model circuit dynamics using modified nodal analysis. Forward reachable regions are computed from given initial states to explore all possible circuit behaviors. Analog properties are checked on all circuit states to ensure full correctness or find a design flaw. Our specification language extends LTL logic with continuous time and values and applies Brockett’s annuli to spec- ify analog signals. We also introduced probability into the specification to support practical analog properties such as metastability behavior. We developed and implemented a reachability analysis tool COHO for a sim- ple class of moderate-dimensional hybrid systems with nonlinear ODE dynamics. COHO employs projectagons to represent and manipulate moderate-dimensional, non-convex reachable regions. COHO solves nonlinear ODEs by conservatively approximating ODEs as linear differential inclusions. COHO is robust and effi- cient. It uses arbitrary precision rational numbers to implement exact computation and trims projectagons to remove infeasible regions. To improve performance and reduce error, several techniques are developed, including a guess-verify strategy, hybrid computation, approximate algorithms, and so on.

[1]  H. Wong-Toi,et al.  Some lessons from the HYTECH experience , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  Mark R. Greenstreet Verifying Safety Properties of Differential Equations , 1996, CAV.

[4]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[5]  Suwen Yang,et al.  Verifying start-up conditions for a ring oscillator , 2008, GLSVLSI '08.

[6]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[7]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[8]  ByongChan Lim,et al.  Leveraging designer's intent: A path toward simpler analog CAD tools , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[9]  Lars Hedrich,et al.  A symbolic approach for mixed-signal model checking , 2008, 2008 Asia and South Pacific Design Automation Conference.

[10]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[11]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[12]  Timothy J. Hickey,et al.  Rigorous Modeling of Hybrid Systems Using Interval Arithmetic Constraints , 2004, HSCC.

[13]  Roger W. Brockett,et al.  Smooth dynamical systems which realize arithmetical and logical operations , 1989 .

[14]  Nicolas Halbwachs,et al.  Delay Analysis in Synchronous Programs , 1993, CAV.

[15]  Pravin Varaiya,et al.  Decidability of Hybrid Systems with Rectangular Differential Inclusion , 1994, CAV.

[16]  Rajeev Alur,et al.  Predicate abstraction for reachability analysis of hybrid systems , 2006, TECS.

[17]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[18]  Michael Mendler,et al.  Newtonian arbiters cannot be proven correct , 1993, Formal Methods Syst. Des..

[19]  Marius Laza,et al.  A robust linear program solver for projectahedra , 2002 .

[20]  Thao Dang,et al.  Hybridization domain construction using curvature estimation , 2011, HSCC '11.

[21]  Leonard R. Marino,et al.  General theory of metastable operation , 1981, IEEE Transactions on Computers.

[22]  Roberto Bagnara,et al.  Possibly Not Closed Convex Polyhedra and the Parma Polyhedra Library , 2002, SAS.

[23]  Ian M. Mitchell,et al.  Integrating Projections , 1998, HSCC.

[24]  M. Greenstreet,et al.  A smooth dynamical system that counts in binary , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[25]  Thomas A. Henzinger,et al.  A Note on Abstract Interpretation Strategies for Hybrid Automata , 1994, Hybrid Systems.

[26]  Alain J. Martin Programming in VLSI: from communicating processes to delay-insensitive circuits , 1991 .

[27]  Sriram Sankaranarayanan,et al.  Symbolic Model Checking of Hybrid Systems Using Template Polyhedra , 2008, TACAS.

[28]  Paul Caspi,et al.  Timed regular expressions , 2002, JACM.

[29]  Thomas A. Henzinger,et al.  Assume-Guarantee Reasoning for Hierarchical Hybrid Systems , 2001, HSCC.

[30]  Thomas A. Henzinger,et al.  An Algorithm for the Approximative Analysis of Rectangular Automata , 1998, FTRTFT.

[31]  Oded Maler,et al.  Recent progress in continuous and hybrid reachability analysis , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[32]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[33]  Charles E. Molnar,et al.  Anomalous Behavior of Synchronizer and Arbiter Circuits , 1973, IEEE Transactions on Computers.

[34]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2006, Theor. Comput. Sci..

[35]  Pei-Hsin Ho,et al.  Automatic Analysis of Hybrid Systems , 1996 .

[36]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[37]  Oded Maler,et al.  Computing Reachable States for Nonlinear Biological Models , 2009, CMSB.

[38]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[39]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[40]  Timothy J. Hickey Analytic constraint solving and interval arithmetic , 2000, POPL '00.

[41]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[42]  Oded Maler,et al.  Accurate hybridization of nonlinear systems , 2010, HSCC '10.

[43]  Antoine Girard,et al.  Hybridization methods for the analysis of nonlinear systems , 2007, Acta Informatica.

[44]  Nacim Meslem,et al.  Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization , 2008, HSCC.

[45]  Rajeev Alur,et al.  Model-checking for real-time systems , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[46]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[47]  Alexander Korshak Noise-rejection model based on charge-transfer equation for digital CMOS circuits , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[48]  Ian M. Mitchell Comparing Forward and Backward Reachability as Tools for Safety Analysis , 2007, HSCC.

[49]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[50]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[51]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[52]  Kim G. Larsen,et al.  A Tutorial on Uppaal , 2004, SFM.

[53]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[54]  Thomas A. Henzinger,et al.  HYTECH: the next generation , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[55]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[56]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[57]  Mark Russell Greenstreet,et al.  Stari: a technique for high-bandwidth communication , 1993 .

[58]  John Lygeros,et al.  Lecture Notes on Hybrid Systems , 2004 .

[59]  Thao Dang Approximate Reachability Computation for Polynomial Systems , 2006, HSCC.

[60]  Oded Maler,et al.  Reachability Analysis via Face Lifting , 1998, HSCC.

[61]  Dejan Nickovic,et al.  Checking Temporal Properties of Discrete, Timed and Continuous Behaviors , 2008, Pillars of Computer Science.

[62]  Thomas A. Henzinger,et al.  Reactive Modules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[63]  Ian M. Mitchell,et al.  Reachability Analysis Using Polygonal Projections , 1999, HSCC.

[64]  Wang Yi,et al.  Compositional and symbolic model-checking of real-time systems , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[65]  Robert P. Kurshan,et al.  Analysis of digital circuits through symbolic reduction , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..