Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater.

Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic-photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo-optic or electro-optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase-change materials (PCMs) exhibit strong optical modulation in a static, self-holding fashion, but the scalability of present PCM-integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM-clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy-efficient switching units operated with low driving voltages, near-zero additional loss, and reversible switching with high endurance are obtained in a complementary metal-oxide-semiconductor (CMOS)-compatible process. This work can potentially enable very large-scale CMOS-integrated programmable electronic-photonic systems such as optical neural networks and general-purpose integrated photonic processors.

[1]  V. Pruneri,et al.  Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials , 2013 .

[2]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[3]  E. Pop,et al.  GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform , 2018 .

[4]  Christopher C. Tison,et al.  Linear programmable nanophotonic processors , 2018, Optica.

[5]  S. Banerjee,et al.  Review—Investigation and Review of the Thermal, Mechanical, Electrical, Optical, and Structural Properties of Atomic Layer Deposited High-k Dielectrics: Beryllium Oxide, Aluminum Oxide, Hafnium Oxide, and Aluminum Nitride , 2017 .

[6]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[7]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[8]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[9]  Sailing He,et al.  Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. , 2016, Optics letters.

[10]  C. David Wright,et al.  In-memory computing on a photonic platform , 2018, Science Advances.

[11]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[12]  S. G. Bishop,et al.  Thermal conductivity of phase-change material Ge2Sb2Te5 , 2006 .

[13]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[14]  Ming Li,et al.  A fully reconfigurable photonic integrated signal processor , 2016, Nature Photonics.

[15]  W. Pernice,et al.  Thermo-optical Effect in Phase-Change Nanophotonics , 2016 .

[16]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[17]  C. David Wright,et al.  Reconfigurable Nanophotonic Cavities with Nonvolatile Response , 2018, ACS Photonics.

[18]  Wei Zhang,et al.  Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing , 2017, Science.

[19]  Siegfried Selberherr,et al.  Simulation of power heterojunction bipolar transistors on gallium arsenide , 2001 .

[20]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[21]  Linjie Zhou,et al.  16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. , 2016, Optics express.

[22]  Ke Li,et al.  Multipurpose silicon photonics signal processor core , 2017, Nature Communications.

[23]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[24]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[25]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[26]  I. Takeuchi,et al.  Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material , 2019, ACS Photonics.

[27]  Hitoshi Kawashima,et al.  Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. , 2012, Optics express.

[28]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[29]  A. Majumdar,et al.  Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. , 2020, ACS applied materials & interfaces.

[30]  Xuan Li,et al.  Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality , 2018, Science Advances.

[31]  Hitoshi Kawashima,et al.  Current-driven phase-change optical gate switch using indium–tin-oxide heater , 2017 .

[32]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[33]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[34]  Lei Qiao,et al.  32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units , 2017, Scientific Reports.

[35]  M. Asheghi,et al.  Modeling and Data for Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature , 2006, IEEE Transactions on Electron Devices.

[36]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[37]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[38]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[39]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[40]  J Feldmann,et al.  Calculating with light using a chip-scale all-optical abacus , 2017, Nature Communications.

[41]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[42]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[43]  S. Kurajica Phase change materials , 2007 .

[44]  Linjie Zhou,et al.  Miniature Multilevel Optical Memristive Switch Using Phase Change Material , 2019, ACS Photonics.

[45]  Wesley D Sacher,et al.  Dynamics of microring resonator modulators. , 2008, Optics express.

[46]  K. Cil Temperature Dependent Characterization and Crystallization Dynamics of Ge2Sb2Te5 Thin Films and Nanoscale Structures , 2015 .

[47]  Michal Lipson,et al.  Optical bistability on a silicon chip. , 2004, Optics letters.

[48]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[49]  A. Pirovano,et al.  Threshold switching and phase transition numerical models for phase change memory simulations , 2008 .

[50]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[51]  C. David Wright,et al.  Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell , 2018, Optica.

[52]  Indranil Chakraborty,et al.  Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons , 2018, Scientific Reports.

[53]  Nathan Youngblood,et al.  Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials , 2018, Advanced materials.

[54]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[55]  Ivana Gasulla,et al.  Programmable multifunctional integrated nanophotonics , 2018, Nanophotonics.

[56]  Arka Majumdar,et al.  Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches , 2018, ACS Photonics.