Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructure

The need to produce sustainable cements has driven research towards nanotechnology. The main cement hydration product, calcium silicate hydrate, is nanosized; hence, the addition of nanoparticles to blended Portland cement formulations can remarkably modify mechanical strength, porosity and durability. The present paper discusses the material aspects of two different nanoparticles, nanosilica and montmorillonite nanoclay, the complications that arise from their addition to cement pastes and ways to mitigate these limitations. It is deduced that nanosilica solids in blended cement pastes should be limited to 0.5%, whereas nanoclay solids to almost 1 mass-% binder. Competitive reactivity of nanoparticles with other constituents is expected, and the possible pozzolanic activity is critically addressed. Notwithstanding progress made, there are significant potentials related to inorganic nanoclays.

[1]  K. Paine,et al.  Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systems , 2015 .

[2]  Mette Rica Geiker,et al.  Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates , 2008 .

[3]  L. Torres-Martínez,et al.  Engineering of SiO 2 Nanoparticles for Optimal Performance in Nano Cement-Based Materials , 2009 .

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  D. Therriault,et al.  Preparation of highly exfoliated polyester-clay nanocomposites: process-property correlations. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[6]  Surendra P. Shah,et al.  Comparative Study of the Effects of Microsilica and Nanosilica in Concrete , 2010 .

[7]  Faheem Uddin Clays, Nanoclays, and Montmorillonite Minerals , 2008 .

[8]  C. Meyer The greening of the concrete industry , 2009 .

[9]  H. Taylor "A tribute to Hydrated Calcium Silicates. Part I. Compound Formation at Ordinary Temperatures""""" , 2008, SP-249: Selected Landmark Paper Collection on Concrete Materials Research.

[10]  Yunfei Xi Synthesis, characterisation and application of organoclays , 2006 .

[11]  Jeng-Ywan Shih,et al.  Material properties of portland cement paste with nano-montmorillonite , 2007 .

[12]  S. H. Alsayed,et al.  Effect of Nano-clay on Mechanical Properties and Microstructure of Ordinary Portland Cement Mortar , 2022 .

[13]  Hamlin M. Jennings,et al.  Refinements to colloid model of C-S-H in cement: CM-II , 2008 .

[14]  Jong-Bin Park,et al.  Characteristics of cement mortar with nano-SiO2 particles , 2007 .

[15]  James J. Beaudoin,et al.  Nanotechnology Applications for Sustainable Cement-Based Products , 2009 .

[16]  A. Nonat,et al.  The Structure, Stoichiometry and Properties of C-S-H Prepared by C3S Hydration Under Controlled Condition , 1998 .

[17]  Deyu Kong,et al.  Modification effects of colloidal nanoSiO2 on cement hydration and its gel property , 2013 .

[18]  Remzi Şahin,et al.  Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume , 2011 .

[19]  Abdul-Ghani Olabi,et al.  Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars , 2011 .

[20]  Styliani Papatzani,et al.  Nanotechnologically modified cements : effects on hydration, microstructure and physical properties , 2014 .

[21]  Kevin Paine,et al.  A comprehensive review of the models on the nanostructure of calcium silicate hydrates , 2015 .

[22]  Byung-Wan Jo,et al.  Characteristics of cement mortar with nano-SiO2 particles , 2007 .

[23]  G. Barluenga,et al.  Early age and hardened performance of cement pastes combining mineral additions , 2013 .

[24]  K. Kurtis,et al.  35 SP-267 — 4 Influence of TiO 2 Nanoparticles on Early C 3 S Hydration , 2009 .

[25]  Pratheep Kumar Annamalai,et al.  Can clay nanoparticles accelerate environmental biodegradation of polyolefins? , 2014 .

[26]  Jong-Shin Huang,et al.  Effects of organo-modified montmorillonite on strengths and permeability of cement mortars , 2006 .

[27]  Ahmed M. Soliman,et al.  Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete , 2013 .

[28]  Reza Hosseinpourpia,et al.  Effect of nano-particles and aminosilane interaction on the performances of cement-based composites: An experimental study , 2014 .

[29]  Dispersed and modified montmorillonite clay nanoparticles for blended Portland cement pastes : Effects on microstructure and strength , 2014 .

[30]  Ravindra K. Dhir,et al.  Use of fly ash to BS EN 450 in structural concrete. Technology Digest 1 , 2002 .

[31]  Gengying Li,et al.  Properties of high-volume fly ash concrete incorporating nano-SiO2 , 2004 .

[32]  Hjh Jos Brouwers,et al.  The properties of amorphous nano-silica synthesized by the dissolution of olivine , 2012 .

[33]  P. Baglioni,et al.  Cement: a two thousand year old nano-colloid. , 2011, Journal of colloid and interface science.

[34]  Surendra P. Shah,et al.  Modification of cement-based materials with nanoparticles , 2013 .

[35]  Faiz Shaikh,et al.  Durability properties of high volume fly ash concrete containing nano-silica , 2015 .

[36]  R. Dhir,et al.  Development of high volume fly ash cements for use in concrete construction , 2005 .

[37]  J. A. A.,et al.  Portland Cement , 1916, Nature.

[38]  Zhenhua Li,et al.  Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite , 2006 .

[39]  A. A. Sapalidis,et al.  PVA / Montmorillonite Nanocomposites: Development and Properties , 2011 .

[40]  Ravindra K. Dhir,et al.  Developing chloride resisting concrete using PFA , 1997 .

[41]  Ye Qing,et al.  A comparative study on the pozzolanic activity between nano-SiO2 and silica fume , 2006 .

[42]  A. Bandyopadhyay,et al.  Synthesis, characterisation and properties of clay and silica based rubber nanocomposites , 2006 .

[43]  Iswandi Imran,et al.  The Use of Nanosilica for Improving of Concrete Compressive Strength and Durability , 2012 .

[44]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[45]  C. Vogt Ultrafine particles in concrete : Influence of ultrafine particles on concrete properties and application to concrete mix design , 2010 .

[46]  J. Tobón,et al.  An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes , 2013, Journal of Thermal Analysis and Calorimetry.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  L. Utracki,et al.  CLAY-CONTAINING POLYMERIC NANOCOMPOS ITES , 2002 .

[49]  J. E. Halliday,et al.  An investigation of the hydration chemistry of ternary blends containing cement kiln dust , 1999 .

[50]  P. Balaguru,et al.  Nanotechnology and Concrete: Research Opportunities , 2008, SP-254: Nanotechnology of Concrete: Recent Developments and Future Perspectives.

[51]  P. Navi,et al.  Simulation of cement paste microstructure hydration, pore space characterization and permeability determination , 2005 .

[52]  K. Scrivener Nanotechnology and Cementitious Materials , 2009 .

[53]  Y. Qing,et al.  Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume , 2007 .

[54]  A. Liu,et al.  Effect of Nano-CaCO3 on Properties of Cement Paste , 2012 .

[55]  A. Gutiérrez-Martínez,et al.  Mortar and Concrete Reinforced with Nanomaterials , 2009 .

[56]  Alaa M. Rashad,et al.  A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash , 2014 .

[57]  Aleksandar Matic,et al.  Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement , 2004 .

[58]  Ana Rita Morales,et al.  Organoclays: Properties, preparation and applications , 2008 .

[59]  Jong-Shin Huang,et al.  Evaluation of strengthening through stress relaxation testing of organo-modified montmorillonite reinforced cement mortars , 2011 .

[60]  Hydrated calcium silicates , 1953 .

[61]  Konstantin Sobolev,et al.  How nanotechnology can change the concrete world : Part two of a two-part series , 2005 .

[62]  Bo Yeon Lee,et al.  Influence of TiO2 Nanoparticles on Early C3S Hydration , 2009, SP-267: Nanotechnology of Concrete: The Next Big Thing is Small.

[63]  Nathan Tregger,et al.  Influence of clays on the rheology of cement pastes , 2010 .

[64]  J. Andrade,et al.  A nanoscale numerical model of calcium silicate hydrate , 2011 .

[65]  R. Selvam,et al.  Potential Application of Nanotechnology on Cement Based Materials , 2009 .

[66]  Eric Mayer,et al.  Properties Of Concrete , 2016 .

[67]  Hui Li,et al.  A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials , 2004 .

[68]  R. Alizadeh Nanostructure and engineering properties of basic and modified calcium-silicate-hydrate systems , 2009 .

[69]  Dominique Lison,et al.  The nanosilica hazard: another variable entity , 2010, Particle and Fibre Toxicology.

[70]  M. Serag,et al.  Effect of Nano Silica De-agglomeration, and Methods of Adding Super-plasticizer on the Compressive Strength, and Workability of Nano Silica Concrete , 2013 .

[71]  J. Ou,et al.  Microstructure of cement mortar with nano-particles , 2004 .

[72]  F. Soleymani Optimum content of SiO 2 nanoparticles in concrete specimens , 2012 .

[73]  K. Paine,et al.  The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes , 2014 .

[74]  R. Frost,et al.  Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide , 2005 .

[75]  I. Mondragon,et al.  Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination , 2008 .

[76]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[77]  V. A. Vigfusson Hydrated calcium silicates , 1931 .

[78]  Carola Aguzzi,et al.  Biopolymer–clay nanocomposites for controlled drug delivery , 2008 .

[79]  Dachamir Hotza,et al.  Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design , 2010 .

[80]  A. Bubshait,et al.  Use of microsilica in concrete construction: Reviews state‐of‐the‐art silica fume concrete and discusses the influence silica fume has on the various properties of concrete and the effect on the bond between parent concrete and new concrete , 1996 .

[81]  H. Khater Studying the effect of thermal and acid exposure on alkali-activated slag geopolymer , 2014 .

[82]  P. Luckham,et al.  The colloidal and rheological properties of bentonite suspensions , 1999 .

[83]  Mohammad Iqbal Khan,et al.  Nanosilica and its Future Prospects in Concrete , 2013 .

[84]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[85]  M. Oltulu,et al.  Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders , 2014 .

[86]  B. Birgisson,et al.  Optimization of Clay Addition for the Enhancement of Pozzolanic Reaction in Nano-modified Cement Paste , 2011 .

[87]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[88]  Saeed Ghaffarpour Jahromi,et al.  ENGINEERING PROPERTIES OF NANOCLAY MODIFIED ASPHALT CONCRETE MIXTURES , 2010 .

[89]  T. Tang,et al.  Controlling dispersed state and exfoliation process of clay in polymer matrix , 2006 .

[90]  Salim Barbhuiya,et al.  Properties of fly ash concrete modified with hydrated lime and silica fume , 2009 .

[91]  J. Labrincha,et al.  Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars , 2010 .

[92]  M. C. Altan,et al.  Effect of nanoclay content on properties of glass–waterborne epoxy laminates at low clay loading , 2010 .

[93]  D. De Kee,et al.  Influence of compatibiliser blends on mechanical and thermal properties of polymer–clay nanocomposites , 2011 .

[94]  H. Brouwers Chemical Reactions in hydrated Ordinary Portland Cement based on the work by Powers and Brownyard , 2003 .

[95]  W. Marsden I and J , 2012 .

[96]  Ioanna Papayianni,et al.  Influence of nano-SiO2 on the Portland cement pastes , 2012 .

[97]  L. Singh,et al.  Granulometric synthesis and characterisation of dispersed nanosilica powder and its application in cementitious system , 2012 .

[98]  Mohammad Khan,et al.  Nanotechnology in Concrete Materials: A Synopsis , 2012 .

[99]  Konstantin Sobolev,et al.  Nanomaterials and Nanotechnology for High-Performance Cement Composites , 2008, SP-254: Nanotechnology of Concrete: Recent Developments and Future Perspectives.

[100]  Florence Sanchez,et al.  Nanotechnology in concrete – A review , 2010 .

[101]  Abang Abdullah Abang Ali,et al.  Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. , 2013 .

[102]  Konstantin Sobolev,et al.  How Nanotechnology Can Change the Concrete World , 2014 .

[103]  Xianming Shi,et al.  Chloride Permeability and Microstructure of Portland Cement Mortars Incorporating Nanomaterials , 2008 .