Analysis of Selective Phosphorous Laser Doping in High-Efficiency Solar Cells

This paper focuses on the analysis of local phosphorous laser doping in high-efficiency solar cells. Those so-called selective emitters are intended to reduce the contact recombination and resistance in order to increase the solar conversion efficiency. Sample solar cells are prepared using laser chemical processing as the laser doping technique and analyzed via analytical models and suns-V oc measurements at high illumination densities. It can be shown that fully ohmic contacts can be manufactured on the investigated selective emitters which exhibit low dark saturation currents. The specific recombination current density of the local laser doping is determined experimentally to be < 8.5 times 10-13 A/cm2 for planar surfaces.

[1]  S. Wenham,et al.  New Emitter Design and Metal Contact for Screen-Printed Solar Cell Front Surfaces , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[2]  S. Glunz,et al.  Analyzing Back Contacts of Silicon Solar Cells by Suns-Voc-Measurement at High Illumination Densities , 2007 .

[3]  Henry W. Brandhorst,et al.  Low-high junction theory applied to solar cells , 1990 .

[4]  Martin A. Green,et al.  High-efficiency, laser grooved, buried contact silicon solar cells , 1988 .

[5]  A. Blakers,et al.  A novel low-cost, high-efficiency micromachined silicon solar cell , 2004, IEEE Electron Device Letters.

[6]  Stefan W. Glunz,et al.  Laser Chemical Processing (LCP)—A versatile tool for microstructuring applications , 2008 .

[7]  F. Granek,et al.  Positive effects of front surface field in high-efficiency back-contact back-junction n-type silicon solar cells , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[8]  Ralf Preu,et al.  Laser‐fired rear contacts for crystalline silicon solar cells , 2002 .

[9]  Martin A. Green,et al.  High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates , 2001 .

[10]  A. Pauchard,et al.  Laser-doped silicon solar cells by Laser Chemical Processing (LCP) exceeding 20% efficiency , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[11]  Bernold Richerzhagen Entwicklung und Konstruktion eines Systems zur Uebertragung von Laserenergie für die Laserzahnbehandlung , 1994 .

[12]  Sangwook Park,et al.  Toward a High Efficiency Siliocn Solar Cells-Simplified Cell Processing using Paste Contained Phosphorous Compounds , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[13]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[14]  Ronald A. Sinton,et al.  A quasi-steady-state open-circuit voltage method for solar cell characterization , 2000 .

[15]  M. Hermle,et al.  New concepts for silicon solar cells , 2009, 2009 13th European Conference on Power Electronics and Applications.

[16]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[17]  Stuart Wenham,et al.  Buried contact solar cells with innovative rear localised contacts , 2004 .

[18]  D. Schroder,et al.  Solar cell contact resistance—A review , 1984, IEEE Transactions on Electron Devices.

[19]  D. Kray,et al.  Comparison of Laser Chemical Processing and LaserMicroJet for structuring and cutting silicon substrates , 2009 .

[20]  Richard M. Swanson,et al.  Doped surfaces in one sun, point-contact solar cells , 1989 .