Fast Marching farthest point sampling for point clouds and implicit surfaces

In a recent paper [13], the Fast Marching farthest point sampling strategy (FastFPS) for planar domains and curved manifolds was introduced. The version of FastFPS for curved manifolds discussed in the paper [13] deals with surface domains in triangulated form only. Due to a restriction of the underlying Fast Marching method, the algorithm further requires the splitting of any obtuse into acute triangles to ensure the consistency of the Fast Marching approximation. In this paper, we overcome these restrictions by using Mémoli and Sapiro’s [11, 12] extension of the Fast Marching method to the handling of implicit surfaces and point clouds. We find that the extended FastFPS algorithm can be applied to surfaces in implicit or point cloud form without the loss of the original algorithm’s computational optimality and without the need for any preprocessing.

[1]  李幼升,et al.  Ph , 1989 .

[2]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[3]  J. Sethian,et al.  Fast Voronoi Diagrams and Offsets on Triangulated Surfaces , 2000 .

[4]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[5]  Craig Gotsman,et al.  Parallel Progressive Ray‐tracing , 1997, Comput. Graph. Forum.

[6]  Neil A. Dodgson,et al.  Fast Marching farthest point sampling , 2003, Eurographics.

[7]  O. Cuisenaire Distance transformations: fast algorithms and applications to medical image processing , 1999 .

[8]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[9]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH Courses.

[10]  Michael Goesele,et al.  3D Data Acquisition , 2002, Eurographics.

[11]  A. Barr,et al.  Discrete Differential-Geometry Operators in n D , 2000 .

[12]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[13]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[14]  F. Mémoli,et al.  Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces: 730 , 2001 .

[15]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[16]  F. Mémoli,et al.  Distance functions and geodesics on points clouds , 2002 .

[17]  Yehoshua Y. Zeevi,et al.  Nonuniform sampling and antialiasing in image representation , 1993, IEEE Trans. Signal Process..

[18]  Robert Sedgewick,et al.  Algorithms in C , 1990 .

[19]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[20]  Marc Levoy,et al.  Real-time 3D model acquisition , 2002, ACM Trans. Graph..

[21]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 2 - Conference B: Computer Vision & Image Processing. (Cat. No.94CH3440-5).

[22]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[23]  Lars Linsen,et al.  Point cloud representation , 2001 .

[24]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[26]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[27]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.