A study of dust properties in the inner sub-au region of the Herbig Ae star HD 169142 with VLTI/PIONIER

An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pretransitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. We find that the observations are consistent with optically thin gray dust lying at Rin ~ 0.07 au, passively heated to T ~ 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin ~ 0.06 au, but this model is plausible only if refractory dust species enduring ~2400 K exist in the inner disk.

[1]  H. Kataza,et al.  MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP , 2012, 1204.5364.

[2]  A. Tielens,et al.  Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps , 2014, 1402.0902.

[3]  C. Dominik,et al.  Stirring up the dust: a dynamical model for halo-like dust clouds in transitional disks , 2011, 1105.5328.

[4]  T. Henning,et al.  GW Orionis: Inner disk readjustments in a triple system , 2014, 1407.4959.

[5]  C. Waelkens,et al.  The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps , 2015, 1506.03274.

[6]  C. Dominik,et al.  A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap , 2015, 1511.04105.

[7]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[8]  Steward Observatory,et al.  GAPS IN THE HD 169142 PROTOPLANETARY DISK REVEALED BY POLARIMETRIC IMAGING: SIGNS OF ONGOING PLANET FORMATION? , 2013, 1302.3029.

[9]  L. A. Hillenbrand,et al.  Spatially Resolving the Inner Disk of TW Hydrae , 2006, astro-ph/0601034.

[10]  G. Weigelt,et al.  Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296: evidence of refractory dust? , 2009, 0911.4363.

[11]  Timothy D. Brandt,et al.  Detailed structure of the outer disk around HD 169142 with polarized light in H-band , 2015, 1505.04937.

[12]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[13]  S. Hinkley,et al.  Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142 , 2017, 1702.04780.

[14]  P. Varniere,et al.  Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546 ? , 2011, 1104.0905.

[15]  A. Krivov,et al.  Debris disks: seeing dust, thinking of planetesimals and planets , 2010, 1003.5229.

[16]  D. Wilner,et al.  A Keplerian Disk around the Herbig Ae Star HD 169142 , 2005, astro-ph/0512478.

[17]  G. Weigelt,et al.  Resolving the inner disk of UX Orionis , 2016 .

[18]  L. Testi,et al.  Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA. , 2016, Physical review letters.

[19]  Robert L. Kurucz,et al.  Model Atmospheres for Population Synthesis , 1992 .

[20]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[21]  E. Tatulli,et al.  The complex structure of the disk around HD 100546 - The inner few astronomical units , 2010, 1001.2491.

[22]  S. Quanz,et al.  IMAGING THE INNER AND OUTER GAPS OF THE PRE-TRANSITIONAL DISK OF HD 169142 AT 7 mm , 2014, 1407.6549.

[23]  William C. Danchi,et al.  Evidence of a discontinuous disk structure around the Herbig Ae star HD 139614 (Corrigendum) , 2013, Astronomy & Astrophysics.

[24]  J. Wisniewski,et al.  VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. III. EXPLORING STRUCTURAL CHANGES IN THE PRE-TRANSITIONAL DISK IN HD 169142 , 2014, 1410.8606.

[25]  F. P. Schloerb,et al.  Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars , 2006, astro-ph/0606052.

[26]  Gijs D. Mulders,et al.  Planet or brown dwarf? Inferring the companion mass in HD 100546 from the wall shape using mid-infrared interferometry , 2013, 1306.4264.

[27]  Vincent Geers,et al.  A Major Asymmetric Dust Trap in a Transition Disk , 2013, Science.

[28]  B. Lopez,et al.  Inner disk clearing around the Herbig Ae star HD\,139614: Evidence for a planet-induced gap ? , 2015, 1510.03093.

[29]  Astronomy,et al.  ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets , 2017, 1702.02844.

[30]  Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142 , 2017, 1703.02957.

[31]  G. Weigelt,et al.  Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432 , 2015, 1512.02276.

[32]  T. Henning,et al.  MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS , 2012, 1204.3473.

[33]  Laird M. Close,et al.  AN ENIGMATIC POINT-LIKE FEATURE WITHIN THE HD 169142 TRANSITIONAL DISK, , 2014, 1408.0794.

[34]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[35]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[36]  M. Min,et al.  Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging - Are all group I disks transitional? , 2013, 1305.3138.

[37]  Gerd Weigelt,et al.  Near-infrared interferometric observation of the Herbig Ae star HD 144432 with VLTI/AMBER , 2012, 1203.6240.

[38]  M. E. van den Ancker,et al.  ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing , 2001 .

[39]  Paul S. Smith,et al.  REVEALING THE STRUCTURE OF A PRE-TRANSITIONAL DISK: THE CASE OF THE HERBIG F STAR SAO 206462 (HD 135344B) , 2009 .

[40]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[41]  Sylvestre Lacour,et al.  A global database for optical interferometry , 2014, Astronomical Telescopes and Instrumentation.

[42]  T. Henning,et al.  GW Ori : Inner disk readjustments in a triple system , 2014 .

[43]  M. Skrutskie,et al.  VARIATIONS OF THE 10 μm SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau , 2009, 0910.3454.

[44]  Dimitri Mawet,et al.  DISCOVERY OF A COMPANION CANDIDATE IN THE HD 169142 TRANSITION DISK AND THE POSSIBILITY OF MULTIPLE PLANET FORMATION , 2014, 1408.0813.