Microsoft Word-00600-Merged.docx

Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial © The Author(s) (2021) . Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. D ow naded rom http/academ ic.p.com /plcell/advance-art.1093/plcell/koab073/6159620 by C aterine Sarp user on 30 M arch 2021

[1]  Omri M. Finkel,et al.  The Plant Microbiome: From Ecology to Reductionism and Beyond. , 2020, Annual review of microbiology.

[2]  Jian-Min Zhou,et al.  Plant Immunity: Danger Perception and Signaling , 2020, Cell.

[3]  S. He,et al.  A plant genetic network for preventing dysbiosis in the phyllosphere , 2020, Nature.

[4]  William M. Mauck,et al.  The strength and pattern of natural selection on gene expression in rice , 2020, Nature.

[5]  C. Hua,et al.  Surface Sensor Systems in Plant Immunity[OPEN] , 2019, Plant Physiology.

[6]  Hai Wang,et al.  Complement Genome Annotation Lift Over Using a Weighted Sequence Alignment Strategy , 2019, Front. Genet..

[7]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[8]  J. Baker,et al.  Gene expression across mammalian organ development , 2019, Nature.

[9]  R. Garrido-Oter,et al.  Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk , 2019, Proceedings of the National Academy of Sciences.

[10]  M. Tsiantis,et al.  Gene networks and the evolution of plant morphology. , 2018, Current opinion in plant biology.

[11]  S. Nuzhdin,et al.  The Evolution of Gene Expression in cis and trans. , 2018, Trends in genetics : TIG.

[12]  Barbara Kracher,et al.  The Defense Phytohormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity[OPEN] , 2018, Plant Cell.

[13]  P. Schulze-Lefert,et al.  A dominant‐interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana , 2017, The New phytologist.

[14]  Ruben Garrido-Oter,et al.  Interplay Between Innate Immunity and the Plant Microbiota. , 2017, Annual review of phytopathology.

[15]  C. Zipfel,et al.  Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. , 2017, Annual review of phytopathology.

[16]  Stéphane Robin,et al.  Inference of Adaptive Shifts for Multivariate Correlated Traits , 2017, bioRxiv.

[17]  P. Lockhart,et al.  Evolutionary Transcriptomics and Proteomics: Insight into Plant Adaptation. , 2017, Trends in plant science.

[18]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[19]  Jonathan D. G. Jones,et al.  The highly buffered Arabidopsis immune signaling network conceals the functions of its components , 2017, PLoS genetics.

[20]  Rainer P Birkenbihl,et al.  Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity , 2016, Plant Cell.

[21]  I. Somssich,et al.  A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen Pseudomonas syringae on Arabidopsis thaliana , 2016, Plant Methods.

[22]  R. Mott,et al.  The Cardamine hirsuta genome offers insight into the evolution of morphological diversity , 2016, Nature Plants.

[23]  M. Yasuda,et al.  Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis. , 2016, Plant & cell physiology.

[24]  J. Bergelson,et al.  Genetic architecture and pleiotropy shape costs of Rps2-mediated resistance in Arabidopsis thaliana , 2016, Nature Plants.

[25]  Karsten M. Borgwardt,et al.  1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana , 2016, Cell.

[26]  Stefan R. Henz,et al.  Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions , 2016, Cell.

[27]  Karl Rohe,et al.  Fast and accurate detection of evolutionary shifts in Ornstein–Uhlenbeck models , 2016 .

[28]  M. Koch,et al.  Turnip Time Travels: Age Estimates in Brassicaceae. , 2016, Trends in plant science.

[29]  Marcel Dicke,et al.  Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. , 2016, The Plant journal : for cell and molecular biology.

[30]  Bronwen L. Aken,et al.  Divergence in gene expression within and between two closely related flycatcher species , 2016, Molecular ecology.

[31]  L. Rieseberg,et al.  Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers. , 2016, Molecular biology and evolution.

[32]  Yang Zhong,et al.  Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution , 2015, Molecular biology and evolution.

[33]  R. Yoshida,et al.  Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6 , 2015, PLoS pathogens.

[34]  M. Koch,et al.  A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN] , 2015, Plant Cell.

[35]  Achim Tresch,et al.  Heterochrony underpins natural variation in Cardamine hirsuta leaf form , 2015, Proceedings of the National Academy of Sciences.

[36]  Peter W. Harrison,et al.  Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds , 2015, Molecular biology and evolution.

[37]  Imre E Somssich,et al.  Transcriptional networks in plant immunity. , 2015, The New phytologist.

[38]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[39]  Sudhir Kumar,et al.  Tree of Life Reveals Clock-Like Speciation and Diversification , 2014, Molecular biology and evolution.

[40]  Henrik Kaessmann,et al.  Evolutionary dynamics of coding and non-coding transcriptomes , 2014, Nature Reviews Genetics.

[41]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[42]  Guy Baele,et al.  Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary , 2014, Genome research.

[43]  E. Boltenkov,et al.  One or three species in Megadenia (Brassicaceae): insight from molecular studies , 2014, Genetica.

[44]  C. Whittle,et al.  Dynamics of transcriptome evolution in the model eukaryote Neurospora , 2014, Journal of evolutionary biology.

[45]  Keqiang Wu,et al.  Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1–Dependent Manner[C][W] , 2014, Plant Cell.

[46]  Jun Zhu,et al.  The tapetal AHL family protein TEK determines nexine formation in the pollen wall , 2014, Nature Communications.

[47]  F. Vuolo,et al.  Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene , 2014, Science.

[48]  Michael S. Barker,et al.  The butterfly plant arms-race escalated by gene and genome duplications , 2014, Proceedings of the National Academy of Sciences.

[49]  J. Glazebrook,et al.  Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Arabidopsis thaliana , 2013, PLoS genetics.

[50]  C. Neinhuis,et al.  Single-Copy Nuclear Genes Place Haustorial Hydnoraceae within Piperales and Reveal a Cretaceous Origin of Multiple Parasitic Angiosperm Lineages , 2013, PloS one.

[51]  Anthony M. Bolger,et al.  Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato , 2013, Proceedings of the National Academy of Sciences.

[52]  Mathieu Blanchette,et al.  The Capsella rubella genome and the genomic consequences of rapid mating system evolution , 2013, Nature Genetics.

[53]  Simon Prochnik,et al.  The Reference Genome of the Halophytic Plant Eutrema salsugineum , 2013, Front. Plant Sci..

[54]  L. Keller,et al.  Evolution at two levels in fire ants: the relationship between patterns of gene expression and protein sequence evolution. , 2013, Molecular biology and evolution.

[55]  F. Parcy Faculty Opinions recommendation of Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants. , 2013 .

[56]  A. Prinzing,et al.  Disparate relatives: Life histories vary more in genera occupying intermediate environments , 2012 .

[57]  Jun Wang,et al.  Insights into salt tolerance from the genome of Thellungiella salsuginea , 2012, Proceedings of the National Academy of Sciences.

[58]  Peter W. Harrison,et al.  The evolution of gene expression and the transcriptome-phenotype relationship. , 2012, Seminars in cell & developmental biology.

[59]  L. Bernatchez,et al.  Genome-wide patterns of divergence during speciation: the lake whitefish case study , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  J. Bergelson,et al.  Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. , 2012, Molecular biology and evolution.

[61]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[62]  P. Schulze-Lefert,et al.  Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. , 2011, The New phytologist.

[63]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[64]  M. Schierup,et al.  Genomic Determinants of Protein Evolution and Polymorphism in Arabidopsis , 2011, Genome biology and evolution.

[65]  U. Eggli,et al.  Contemporaneous and recent radiations of the world's major succulent plant lineages , 2011, Proceedings of the National Academy of Sciences.

[66]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[67]  M. Clements,et al.  Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana , 2010, Proceedings of the National Academy of Sciences.

[68]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[69]  Martin Krzywinski,et al.  Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis[W][OA] , 2010, Plant Cell.

[70]  Timothy L. Bailey,et al.  Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.

[71]  T. Boller,et al.  Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele , 2009, Proceedings of the National Academy of Sciences.

[72]  J. Glazebrook,et al.  Network Properties of Robust Immunity in Plants , 2009, PLoS genetics.

[73]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[74]  R. Ree,et al.  Molecular phylogeny of Solms‐laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications , 2009 .

[75]  M. Matsuoka,et al.  Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. , 2009, Plant & cell physiology.

[76]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[77]  I. Al‐Shehbaz,et al.  Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae , 2009 .

[78]  Steffen Neumann,et al.  Highly sensitive feature detection for high resolution LC/MS , 2008, BMC Bioinformatics.

[79]  N. Graham,et al.  Evidence of neutral transcriptome evolution in plants. , 2008, The New phytologist.

[80]  Peter Widmayer,et al.  Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes , 2008, Adv. Bioinformatics.

[81]  J. Glazebrook,et al.  Interplay between MAMP-triggered and SA-mediated defense responses. , 2008, The Plant journal : for cell and molecular biology.

[82]  Naama Barkai,et al.  Evolution of gene sequence and gene expression are not correlated in yeast. , 2008, Trends in genetics : TIG.

[83]  Wenxian Sun,et al.  Identification and Mutational Analysis of Arabidopsis FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception[W] , 2007, The Plant Cell Online.

[84]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[85]  Miltos Tsiantis,et al.  The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta , 2006, Nature Genetics.

[86]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[87]  Jeffrey P. Mower,et al.  Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae , 2005, BMC Evolutionary Biology.

[88]  R. Nielsen Molecular signatures of natural selection. , 2005, Annual review of genetics.

[89]  S. Pääbo,et al.  Parallel Patterns of Evolution in the Genomes and Transcriptomes of Humans and Chimpanzees , 2005, Science.

[90]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[91]  Jonathan D. G. Jones,et al.  Bacterial disease resistance in Arabidopsis through flagellin perception , 2004, Nature.

[92]  D. Schluter,et al.  Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks , 2004, Nature.

[93]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[94]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[95]  A. Mitchell,et al.  Molecular systematics of the New Zealand Pachycladon (Brassicaceae) complex: Generic circumscription and relationships to Arabidopsis sens. lat. and Arabis sens. lat. , 2002 .

[96]  F. Ausubel,et al.  MAP kinase signalling cascade in Arabidopsis innate immunity , 2002, Nature.

[97]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[98]  T. Boller,et al.  A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. , 1999, The Plant journal : for cell and molecular biology.

[99]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[100]  M. Kojima,et al.  Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography-tandem mass spectrometry. , 2012, Methods in molecular biology.

[101]  F. Bakker,et al.  Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). , 2010, Molecular biology and evolution.

[102]  John Quackenbush,et al.  Genesis: cluster analysis of microarray data , 2002, Bioinform..

[103]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .