Measurement of Heat Flow Transmitted through a Stacked-Screen Regenerator of Thermoacoustic Engine

A stacked-screen regenerator is a key component in a thermoacoustic Stirling engine. Therefore, the choice of suitable mesh screens is important in the engine design. To verify the applicability of four empirical equations used in the field of thermoacoustic engines and Stirling engines, this report describes the measurements of heat flow rates transmitted through the stacked screen regenerator inserted in an experimental setup filled with pressurized Argon gas having mean pressure of 0.45 MPa. Results show that the empirical equations reproduce the measured heat flow rates to a mutually similar degree, although their derivation processes differ. Additionally, results suggest that two effective pore radii would be necessary to account for the viscous and thermal behaviors of the gas oscillating in the stacked-screen regenerators.

[1]  David A. Harris,et al.  Sound Absorbing Materials , 1991 .

[2]  Tianshou Zhao,et al.  Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow , 1996 .

[3]  Gregory W. Swift,et al.  Simple harmonic analysis of regenerators , 1996 .

[4]  Ercang Luo,et al.  Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator , 2011 .

[5]  R. Shah,et al.  Compact Heat Exchangers , 1990 .

[6]  Richard Raspet,et al.  Parallel capillary-tube-based extension of thermoacoustic theory for random porous media. , 2007, The Journal of the Acoustical Society of America.

[7]  G. Swift,et al.  Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC) , 2007 .

[8]  J. A. Esnaola,et al.  Experimental and numerical flow investigation of Stirling engine regenerator , 2014 .

[9]  D. Gedeon,et al.  Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts , 1996 .

[10]  T. Biwa,et al.  Modeling of a stacked-screen regenerator in an oscillatory flow , 2016 .

[11]  Scott Backhaus,et al.  Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy , 2012 .

[12]  G. Swift Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators , 2017 .

[13]  Iwao Yamashita,et al.  Flow and heat transfer characteristics of stirling engine regenerator in oscillating flow. , 1989 .

[14]  C. Kato,et al.  Experimental evaluation of the acoustic properties of stacked-screen regenerators. , 2009, The Journal of the Acoustical Society of America.

[15]  Robert F. Lambert,et al.  Standing wave apparatus for measuring fundamental properties of acoustic materials in air , 1990 .

[16]  Iwao Yamashita,et al.  Flow and Heat Transfer Characteristics of the Stirling Engine Regenerator in an Oscillating Flow , 1990 .

[17]  G. Swift,et al.  A thermoacoustic Stirling heat engine , 1999, Nature.

[18]  Sandeep Kumar,et al.  Appl. Sci , 2013 .

[19]  Naotsugu Isshiki,et al.  Studies on Flow Resistance and Heat Transfer of Regenerator Wire Meshes of Stirling Engine in Oscillatory Flow , 1997 .

[20]  S. Hasegawa,et al.  Thermal diffusion effect of a regenerator with complex flow channels , 2016 .

[21]  G. Swift,et al.  Two-sensor power measurements in lossy ducts. , 1992, The Journal of the Acoustical Society of America.

[22]  L. Wilen,et al.  Lumped-element technique for the measurement of complex density. , 2001, The Journal of the Acoustical Society of America.

[23]  Robert F. Lambert,et al.  Nonlinear wave propagation through rigid porous materials. I: Nonlinear parametrization and numerical solutions , 1990 .

[24]  G. W. Swift,et al.  An intrinsically irreversible thermoacoustic heat engine , 1983 .

[25]  Hiroshi Nomura,et al.  Experimental verification of a two-sensor acoustic intensity measurement in lossy ducts. , 2008, The Journal of the Acoustical Society of America.

[26]  O. Symko,et al.  Ultrasonic thermoacoustic energy converter. , 2013, Ultrasonics.

[27]  Amr M. Baz,et al.  Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator , 2012 .

[28]  S. Spoelstra,et al.  A high performance thermoacoustic engine , 2011 .

[29]  T. Biwa,et al.  Amplitude Dependence of Thermoacoustic Properties of Stacked Wire Meshes , 2012 .

[30]  Ning Zhang,et al.  An acoustically matched traveling-wave thermoacoustic generator achieving 750 W electric power , 2016 .

[31]  Akira Tominaga,et al.  Thermodynamic aspects of thermoacoustic theory , 1995 .