Representations of Importance and Interaction of Fuzzy Measures, Capacities, Games and Its Extensions: A Survey

This paper gives a survey of the theory and results on representation of importance and interaction of fuzzy measures, capacities, games and its extensions: games on convex geometries, bi-capacities, bi-cooperative games, and multi-choice games, etc. All these games are regarded as games on products of distributive lattices or on regular set systems.

[1]  Roger B. Myerson,et al.  Graphs and Cooperation in Games , 1977, Math. Oper. Res..

[2]  Michel Grabisch,et al.  The interaction transform for functions on lattices , 2009, Discret. Math..

[3]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[4]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[5]  Christophe Labreuche,et al.  Bi-capacities -- Part I: definition, Möbius transform and interaction , 2007, ArXiv.

[6]  John C. Harsanyi,et al.  A Simplified Bargaining Model for the n-Person Cooperative Game , 1963 .

[7]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[8]  Michel Grabisch,et al.  An axiomatic approach to the concept of interaction among players in cooperative games , 1999, Int. J. Game Theory.

[9]  R. P. Dilworth Review: G. Birkhoff, Lattice theory , 1950 .

[10]  Marc Roubens,et al.  Advances in decision analysis , 1999 .

[11]  Michel Grabisch Capacities and Games on Lattices: a Survey of Results , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Imma Curiel,et al.  Cooperative game theory and applications , 1997 .

[13]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[14]  J. M. Bilbao,et al.  Cooperative Games on Combinatorial Structures , 2000 .

[15]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[16]  M. Roubens,et al.  The Chaining Interaction Index among Players in Cooperative Games , 1999 .

[17]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[18]  L. Shapley A Value for n-person Games , 1988 .

[19]  Michel Grabisch,et al.  Equivalent Representations of Set Functions , 2000, Math. Oper. Res..

[20]  T. E. S. Raghavan,et al.  Shapley Value for Multichoice Cooperative Games, I , 1993 .

[21]  Ivan Kojadinovic,et al.  A weight-based approach to the measurement of the interaction among criteria in the framework of aggregation by the bipolar Choquet integral , 2007, Eur. J. Oper. Res..

[22]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[23]  M. Slikker,et al.  Social and Economic Networks in Cooperative Game Theory , 2001 .

[24]  Jean-Luc Marichal,et al.  Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices , 2006, Games Econ. Behav..

[25]  Pradeep Dubey,et al.  Value Theory Without Efficiency , 1981, Math. Oper. Res..

[26]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[27]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[28]  A. Roth The Shapley value , 2005, Game Theory.

[29]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[30]  Aoi Honda,et al.  A generalization of cooperative games and its solution concept , 2009 .

[31]  G. Owen Multilinear Extensions of Games , 1972 .