Peroxisome Proliferator-Activated Receptorg-Retinoid X Receptor Agonists Increase CD36-Dependent Phagocytosis of Plasmodium falciparum-Parasitized Erythrocytes and Decrease Malaria-Induced TNF-a Secretion by Monocytes/Macrophages

[1]  K. Kain,et al.  Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. , 2000, Blood.

[2]  Sander Kersten,et al.  Roles of PPARs in health and disease , 2000, Nature.

[3]  V. Pasceri,et al.  Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. , 2000, Circulation.

[4]  G. Natoli,et al.  Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase , 2000, Nature.

[5]  T. Taylor,et al.  Cytokine expression in the brain in human cerebral malaria. , 1999, The Journal of infectious diseases.

[6]  N. Day,et al.  The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. , 1999, The Journal of infectious diseases.

[7]  C. Whitty,et al.  A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. , 1999, The American journal of pathology.

[8]  R. Surtees,et al.  Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier , 1999, Brain Research.

[9]  M. Wahlgren Creating deaths from malaria , 1999, Nature Genetics.

[10]  A. Craig,et al.  Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. , 1999, International journal for parasitology.

[11]  Kevin Marsh,et al.  A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria , 1999, Nature Genetics.

[12]  R. Coppel,et al.  A recombinant peptide based on Pf EMP‐1 blocks and reverses adhesion of malaria‐infected red blood cells to CD36 under flow , 1998, Molecular microbiology.

[13]  L. Luzzatto,et al.  Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. , 1998, Blood.

[14]  I. Crandall,et al.  The Plasmodium falciparum-CD36 interaction is modified by a single amino acid substitution in CD36. , 1998, Blood.

[15]  N. White Not much progress in treatment of cerebral malaria , 1998, The Lancet.

[16]  R. Evans,et al.  PPARγ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL , 1998, Cell.

[17]  P. Arese,et al.  Phagocytosis of the Malarial Pigment, Hemozoin, Impairs Expression of Major Histocompatibility Complex Class II Antigen, CD54, and CD11c in Human Monocytes , 1998, Infection and Immunity.

[18]  B. Seed,et al.  PPAR-γ agonists inhibit production of monocyte inflammatory cytokines , 1998, Nature.

[19]  H. Singh,et al.  Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. , 1997, Blood.

[20]  A. Craig,et al.  Receptor-specific adhesion and clinical disease in Plasmodium falciparum. , 1997, The American journal of tropical medicine and hygiene.

[21]  P. Kubes,et al.  Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. , 1997, Journal of immunology.

[22]  W. Leitner,et al.  Plasmodium falciparum malaria blood stage parasites preferentially inhibit macrophages with high phagocytic activity , 1997, Parasite immunology.

[23]  S. Looareesuwan,et al.  Cytoadherence characteristics of Plasmodium falciparum isolates from Thailand: evidence for chondroitin sulfate a as a cytoadherence receptor. , 1996, The American journal of tropical medicine and hygiene.

[24]  D. Baruch,et al.  Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Gerold,et al.  Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. , 1996, Journal of immunology.

[26]  L. Yesner,et al.  Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation. , 1996, Blood.

[27]  R. Silverstein,et al.  CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis , 1995, The Journal of experimental medicine.

[28]  D. Kwiatkowski,et al.  Strain variation in tumor necrosis factor induction by parasites from children with acute falciparum malaria , 1995, Infection and immunity.

[29]  Davis,et al.  An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. , 1994, The American journal of pathology.

[30]  D. Kwiatkowski,et al.  Variation in the TNF-α promoter region associated with susceptibility to cerebral malaria , 1994, Nature.

[31]  A. Urquhart,et al.  Putative pathophysiological interactions of cytokines and phagocytic cells in severe human falciparum malaria. , 1994, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[32]  D. Riches,et al.  Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. , 1993, Journal of immunology.

[33]  D. Staunton,et al.  Soluble intercellular adhesion molecule 1-immunoglobulin G1 immunoadhesin mediates phagocytosis of malaria-infected erythrocytes , 1992, The Journal of experimental medicine.

[34]  C. Benjamin,et al.  Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1 , 1992, The Journal of experimental medicine.

[35]  J Savill,et al.  Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. , 1992, The Journal of clinical investigation.

[36]  H. Ginsburg,et al.  Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment [published erratum appears in J Exp Med 1993 Mar 1;177(3):following 873] , 1992, The Journal of experimental medicine.

[37]  H. Ginsburg,et al.  Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. , 1992, Blood.

[38]  H. Webster,et al.  Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. , 1991, The Journal of infectious diseases.

[39]  B. M. Greenwood,et al.  TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria , 1990, The Lancet.

[40]  J. Barnwell,et al.  The pathology of human cerebral malaria. , 1990, The American journal of tropical medicine and hygiene.

[41]  R. Howard,et al.  Molecular studies related to the pathogenesis of cerebral malaria. , 1989, Blood.

[42]  H. Shear,et al.  Role of IFN-gamma in lethal and nonlethal malaria in susceptible and resistant murine hosts. , 1989, Journal of immunology.

[43]  C. Ockenhouse,et al.  Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro. , 1989, The Journal of clinical investigation.

[44]  Brian Seed,et al.  CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes , 1989, Cell.

[45]  M. Molyneux,et al.  Tumor necrosis factor and disease severity in children with falciparum malaria. , 1989, The New England journal of medicine.

[46]  L. Miller,et al.  Cytoadherence of Plasmodium falciparum-infected erythrocytes to human melanoma cell lines correlates with surface OKM5 antigen , 1987, Infection and immunity.

[47]  D. Warrell Pathophysiology of severe falciparum malaria in man , 1987, Parasitology.

[48]  J. Barnwell,et al.  Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells. , 1985, Journal of immunology.

[49]  N. White,et al.  Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. , 1985, The American journal of pathology.

[50]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[51]  R. Evans,et al.  PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation , 2001, Nature Medicine.

[52]  D. Altshuler,et al.  The role of PPAR-γ in macrophage differentiation and cholesterol uptake , 2001, Nature Medicine.

[53]  S. Khusmith,et al.  Cytoadherence characteristics of Plasmodium falciparum isolates in Thailand using an in vitro human lung endothelial cells model. , 2000, The American journal of tropical medicine and hygiene.

[54]  M. Molyneux,et al.  Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria , 2000, Nature Medicine.

[55]  C. Glass,et al.  15-Deoxy- D 12,14 -prostaglandin J 2 inhibits multiple steps in the NF- k B signaling pathway , 2000 .

[56]  I. Crandall,et al.  The Plasmodium falciparum – CD 36 Interaction Is Modified by a Single Amino Acid Substitution in CD 36 , 1998 .

[57]  M. Wahlgren,et al.  PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. , 1997, Nature medicine.

[58]  P. Gerold,et al.  Neutralizing monoclonal antibodies to glycosylphosphatidylinositol, the dominant TNF-alpha-inducing toxin of Plasmodium falciparum: prospects for the immunotherapy of severe malaria. , 1993, Annals of tropical medicine and parasitology.

[59]  T. Martínez Sánchez [Pathogenesis of malaria]. , 1951, Medicamenta.

[60]  N.,et al.  Posttranscriptional Regulation of Macrophage Tissue Factor Expression by Antioxidants , 2022 .