Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission

Abstract The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA/Venus Express mission has technical specifications well suited for many science objectives of Venus exploration. VIRTIS will both comprehensively explore a plethora of atmospheric properties and processes and map optical properties of the surface through its three channels, VIRTIS-M-vis (imaging spectrometer in the 0.3–1 μm range), VIRTIS-M-IR (imaging spectrometer in the 1–5 μm range) and VIRTIS-H (aperture high-resolution spectrometer in the 2–5 μm range). The atmospheric composition below the clouds will be repeatedly measured in the night side infrared windows over a wide range of latitudes and longitudes, thereby providing information on Venus's chemical cycles. In particular, CO, H2O, OCS and SO2 can be studied. The cloud structure will be repeatedly mapped from the brightness contrasts in the near-infrared night side windows, providing new insights into Venusian meteorology. The global circulation and local dynamics of Venus will be extensively studied from infrared and visible spectral images. The thermal structure above the clouds will be retrieved in the night side using the 4.3 μm fundamental band of CO2. The surface of Venus is detectable in the short-wave infrared windows on the night side at 1.01, 1.10 and 1.18 μm, providing constraints on surface properties and the extent of active volcanism. Many more tentative studies are also possible, such as lightning detection, the composition of volcanic emissions, and mesospheric wave propagation.

[1]  David Crisp,et al.  Water in the deep atmosphere of Venus from high-resolution spectra of the night side , 1995 .

[2]  A. Basilevsky,et al.  On rates and styles of late volcanism and rifting on Venus , 2002 .

[3]  Angioletta Coradini,et al.  VIRTIS: The imaging spectrometer of the Rosetta mission , 1999 .

[4]  Gareth P. Williams,et al.  Large-Scale Motion in the Venus Stratosphere , 1979 .

[5]  R. Kirk,et al.  Reply [to “Comment on ‘The global resurfacing of Venus’ by R. G. Strom, G. G. Schaber, and D. D. Dawson”] , 1995 .

[6]  Donald M. Hunten,et al.  Venus II--geology, geophysics, atmosphere, and solar wind environment , 1997 .

[7]  Peter G. Ford,et al.  Venus surface radiothermal emission as observed by Magellan , 1992 .

[8]  R. Haus,et al.  Radiative energy balance of the Venus mesosphere , 1990 .

[9]  Maribeth Price,et al.  Dating volcanism and rifting on Venus using impact crater , 1996 .

[10]  S. Calcutt,et al.  Structure of Venus's atmosphere from modelling of night-side infrared spectra , 1988, Nature.

[11]  J. Pollack,et al.  The upper clouds of Venus : determination of the scale height from NIMS- Galileo infrared data , 1993 .

[12]  W. Rossow A General Circulation Model of a Venus-Like Atmosphere , 1983 .

[13]  J. A. Magalhāes,et al.  Inertio-Gravity Waves in the Atmosphere of Neptune , 1993 .

[14]  J. Crawford,et al.  Cloud structure on the dark side of Venus , 1984, Nature.

[15]  T. McCord Titan: Surface compositional units from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) , 2006 .

[16]  D. W. Strecker,et al.  Properties of the clouds of Venus, as inferred from airborne observations of its near-infrared reflectivity spectrum , 1978 .

[17]  J. Pollack,et al.  The dark side of Venus: near-infrared images and spectra from the Anglo-Australian observatory. , 1991, Science.

[18]  Kevin H. Baines,et al.  Latitudinal distribution of carbon monoxide in the deep atmosphere of Venus , 1993 .

[19]  W. Traub,et al.  O2/1 Delta/ emission in the day and night airglow of Venus , 1979 .

[20]  Seiji Sugita,et al.  On observing the compositional variability of the surface of Venus using nightside near‐infrared thermal radiation , 2003 .

[21]  D. Hunten Venus lightning: Pros and cons , 1995 .

[22]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[23]  J. Zimbelman Emplacement of long lava flows on planetary surfaces , 1998 .

[24]  T V Johnson,et al.  Galileo Infrared Imaging Spectroscopy Measurements at Venus , 1991, Science.

[25]  R. Le Doucen,et al.  Measurements and empirical modeling of pure CO(2) absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands. , 1996, Applied optics.

[26]  L. Kaplan,et al.  Carbon monoxide in the Venus atmosphere. , 1968 .

[27]  David Crisp,et al.  Near-Infrared Sounding of the Lower Atmosphere of Venus , 1996 .

[28]  Jeffrey S. Kargel,et al.  Channels and valleys on Venus: Preliminary analysis of Magellan data , 1992 .

[29]  Robert D. van der Hilst,et al.  Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth , 2003 .

[30]  D. Diner,et al.  Infrared imaging of Venus: 8–14 micrometers , 1976 .

[31]  David Crisp,et al.  The deep atmosphere of Venus revealed by high-resolution nightside spectra , 1990, Nature.

[32]  A study of the influence of the surface emittance and extinction by dust on Martian IR spectra , 1999 .

[33]  R. Dickinson Infrared Radiative Heating and Cooling in the Venusian Mesosphere.I: Global Mean Radiative Equilibrium , 1972 .

[34]  Darrell E. Burch,et al.  Absorption of Infrared Radiant Energy by CO 2 and H 2 O, V. Absorption by CO 2 between 1100 and 1835 cm −1 (9.1–5.5 μm)* , 1971 .

[35]  U. Dyudina,et al.  The Retrieval of Cloud Structure Maps in the Equatorial Region of Jupiter Using a Principal Component Analysis of Galileo/NIMS Data , 2002 .

[36]  D. Hunten,et al.  THE THERMAL BALANCE OF THE MIDDLE AND UPPER ATMOSPHERE OF VENUS , 2022, Venus.

[37]  R. W. Carlsonl,et al.  The Galileo Encounter with Venus : results from the Near Infrared Mapping Spectrometer , 1997 .

[38]  Superrotation induced by critical-level absorption of gravity waves on Venus - An assessment , 1987 .

[39]  V. I. Moroz,et al.  Estimates of visibility of the surface of Venus from descent probes and balloons , 2002 .

[40]  Philippe Lognonné,et al.  Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves , 2003 .

[41]  M. L. Kaiser,et al.  Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning , 2001, Nature.

[42]  R. H. Brown,et al.  The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation , 2004 .

[43]  Ellen R. Stofan,et al.  A New View of the Stratigraphic History of Venus , 1999 .

[44]  Alfred S. McEwen,et al.  Active Volcanism on Io: Global Distribution and Variations in Activity , 1999 .

[45]  A. Hashimoto,et al.  Mineral equilibria and the high radar reflectivity of Venus mountaintops , 1992 .

[46]  A. Rodin,et al.  The Effect of Collisional Line Broadening on the Spectrum and Fluxes of Thermal Radiation in the Lower Atmosphere of Venus , 2005 .

[47]  P. Drossart,et al.  Non-LTE infrared observations at Venus: From NIMS/Galileo to VIRTIS/Venus Express , 2007 .

[48]  Mirel Birlan,et al.  Remote sensing of Venus’ lower atmosphere from ground-based IR spectroscopy: Latitudinal and vertical distribution of minor species , 2006 .

[49]  P. Thomas,et al.  Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000 , 2002 .

[50]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[51]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Bruce F. Houghton,et al.  The encyclopedia of volcanoes , 1999 .

[53]  David Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: 1.27‐μm O2(a 1Δ g ) airglow from the upper atmosphere , 1996 .

[54]  D. Diner,et al.  Rotation of Venus's polar dipole , 1983, Nature.

[55]  Angioletta Coradini,et al.  Detection of Sub-Micron Radiation from the Surface of Venus by Cassini/VIMS , 2000 .

[56]  N. Filippov,et al.  LINE MIXING IN THE INFRARED SPECTRA OF SIMPLE GASES AT MODERATE AND HIGH DENSITIES , 1996 .

[57]  P. Gierasch Meridional Circulation and the Maintenance of the Venus Atmospheric Rotation , 1975 .

[58]  Richard H. Tipping,et al.  A far wing line shape theory and its application to the water continuum absorption in the infrared region. I , 1991 .

[59]  J. Wood ROCK WEATHERING ON THE SURFACE OF VENUS , 2022, Venus II.

[60]  Robert G. Strom,et al.  The Resurfacing History of Venus , 1997 .

[61]  E. Parfitt,et al.  Large‐scale volcanic activity at Maat Mons: Can this explain fluctuations in atmospheric chemistry observed by Pioneer Venus? , 1995 .

[62]  C. B. Farmer,et al.  Structure and meteorology of the middle atmosphere of Venus: Infrared remote sensing from the Pioneer Orbiter , 1980 .

[63]  M E Davies,et al.  Images from Galileo of the Venus Cloud Deck , 1991, Science.

[64]  Steven W. Squyres,et al.  Venus tectonics: An overview of Magellan observations , 1992 .

[65]  Laurence S. Rothman,et al.  Determination of vibrational energy levels and parallel band intensities of 12C16O2 by Direct Numerical Diagonalization , 1986 .

[66]  J. Bernard Minster,et al.  GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake , 1995 .

[67]  T. Slanger,et al.  Airglow Processes in Planetary Atmospheres , 2013 .

[68]  Andrea Accomazzo,et al.  Venus Express—The first European mission to Venus , 2005 .

[69]  G. Schubert,et al.  The 4-Day Venus Circulation Driven by Periodic Thermal Forcing , 1970 .

[70]  H. Revercomb,et al.  Net Thermal Radiation in the Atmosphere of Venus , 1985 .

[71]  David Crisp,et al.  Variable oxygen airglow on Venus as a probe of atmospheric dynamics , 1992, Nature.

[72]  J. Reynaud,et al.  The panoramic camera of the ROSETTA mission: performances of prototype 3D microcameras , 1999 .

[73]  J. R. Phillips,et al.  Pioneer Venus Orbiter search for Venusian lightning , 1991 .

[74]  Fredric W. Taylor,et al.  Measurements of the mean, solar‐fixed temperature and cloud structure of the middle atmosphere of Venus , 1983 .

[75]  O. B. Rodimova,et al.  Spectral line shape. I. Kinetic equation for arbitrary frequency detunings , 1995 .

[76]  Ashwin R. Vasavada,et al.  Galileo Images of Lightning on Jupiter , 1999 .

[77]  J. Bell,et al.  Spectroscopic Observations of Bright and Dark Emission Features on the Night Side of Venus , 1991, Science.

[78]  Joe Zender,et al.  Venus Express science planning , 2006 .

[79]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[80]  Henry E. Revercomb,et al.  Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude , 1985 .

[81]  Klaus W. Hodapp,et al.  Infrared imaging of the , 1987 .

[82]  C. Reddi MIDDLE ATMOSPHERE DYNAMICS , 1998 .

[83]  Philippe Lognonné,et al.  Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling , 2004 .

[84]  R. Livingston,et al.  Large amplitude thermospheric oscillations induced by an earthquake , 1985 .

[85]  W. Borucki,et al.  Venus O2 visible and IR nightglow : implications for lower thermosphere dynamics and chemistry , 1994 .

[86]  David Crisp,et al.  Near-infrared light from Venus' nightside - A spectroscopic analysis , 1993 .

[87]  S. Erard,et al.  Numerical simulation of the visible and near infrared radiance of Mars: effects of atmospheric scattering , 2004 .

[88]  Raphaël F. Garcia,et al.  Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data , 2005 .

[89]  X. Bonnin,et al.  Detecting atmospheric perturbations produced by Venus quakes , 2005 .

[90]  N. Filippov,et al.  Kinetic theory of band shapes in molecular spectra of gases: Application to band wings , 1998 .

[91]  T. Encrenaz,et al.  Latitudinal variations of CO and OCS in the lower atmosphere of Venus from near-infrared nightside spectro-imaging , 2005 .

[92]  B. Fegley,et al.  The Oxidation State of the Lower Atmosphere and Surface of Venus , 1997 .

[93]  Jon M. Jenkins,et al.  Magellan Radio Occultation Measurements of Atmospheric Waves on Venus , 1993 .

[94]  L. Travis,et al.  Cloud morphology and motions from Pioneer Venus images , 1980 .

[95]  Mark A. Bullock,et al.  The Recent Evolution of Climate on Venus , 2001 .

[96]  T. Encrenaz,et al.  The Thermal Structure and Dynamics of the Atmosphere of Venus between 70 and 90 km from the Galileo-NIMS Spectra , 1995 .

[97]  T. Imamura,et al.  Elucidating the rate of volcanism on venus: Detection of lava eruptions using near-infrared observations , 2001 .

[98]  D. Edwards,et al.  Non-LTE Infrared Emissions of CO2 in the Atmosphere of Venus , 2000 .

[99]  W. Smythe,et al.  Near-Infrared Mapping Spectrometer experiment on Galileo , 1992 .

[100]  P. Gierasch,et al.  High resolution cloud feature tracking on Venus by Galileo , 1994 .

[101]  V. Gulick,et al.  Venusian Channels and Valleys: Distribution and Volcanological Implications , 1993 .

[102]  J. Head,et al.  Volcanic processes and landforms on Venus: theory, predictions, and observations. , 1986 .