Parallel finite element computations in fluid mechanics

We provide an overview of the role of parallel finite element computations in fluid mechanics. We emphasize the class of flow problems involving moving boundaries and interfaces. Some of the computationally most challenging flow problems, such as fluid–object and fluid–structure interactions as well as free-surface and two-fluid flows, belong to this class. In the development of the methods targeting this class of problems, the computational challenges involved need to be addressed in such a way that 3D computation of complex applications can be carried out efficiently on parallel computers. This requirement has to be one of the key factors in designing various components of the overall solution approach, such as solution techniques for the discretized equations and mesh update methods for handling the changes in the spatial domain occupied by the fluid. This overview includes a description of how the computational challenges are addressed and how the computational schemes can be enhanced with special preconditioning techniques. � 2005 Elsevier B.V. All rights reserved.

[1]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[2]  Thomas J. R. Hughes,et al.  A case study in parallel computation: Viscous flow around an ONERA M6 wing , 1995 .

[3]  Stéphane Lanteri,et al.  Two-dimensional viscous flow computations on the Connection Machine: unstructured meshes, upwind schemes and massively parallel computations , 1993 .

[4]  Thomas J. R. Hughes,et al.  A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids , 1991 .

[5]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[6]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[7]  W. Greub Linear Algebra , 1981 .

[8]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[9]  S. Lennart Johnsson,et al.  The Finite Element Method on a Data Parallel Computing System , 1989, Int. J. High Speed Comput..

[10]  Gene H. Golub,et al.  A parallel balance scheme for banded linear systems , 2001, Numer. Linear Algebra Appl..

[11]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[12]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[13]  Tayfun E. Tezduyar Finite Element Interface-Tracking and Interface-Capturing Techniques for Flows With Moving Boundaries and Interfaces , 2001, Heat Transfer: Volume 3 — Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows.

[14]  Marek Behr,et al.  A new mixed preconditioning method for finite element computations , 1992 .

[15]  C. Farhat,et al.  Mixed explicit/implicit time integration of coupled aeroelastic problems: Three‐field formulation, geometric conservation and distributed solution , 1995 .

[16]  Gregory M. Hulbert,et al.  New Methods in Transient Analysis , 1992 .

[17]  S. Lennart Johnsson,et al.  Data structures and algorithms for the finite element method on a data parallel supercomputer , 1990 .

[18]  Tayfun E. Tezduyar,et al.  Parallel iterative computational methods for 3D finite element flow simulations , 1998 .

[19]  V. Simoncini,et al.  Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .

[20]  Stéphane Lanteri,et al.  Simulation of compressible viscous flows on a variety of MPPs: computational algorithms for unstructured dynamic meshes and performance results , 1994 .

[21]  Matthew G. Knepley,et al.  Parallel Simulation of Particulate Flows , 1998, IRREGULAR.

[22]  Thomas J. R. Hughes,et al.  Scalability of finite element applications on distributed-memory parallel computers , 1994 .

[23]  Thomas J. R. Hughes,et al.  Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations , 1983 .

[24]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[25]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[26]  Grouped element-by-element iteration schemes for incompressible flow computations , 1989 .

[27]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[28]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[29]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[30]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[31]  Ahmed Sameh,et al.  A nested iterative scheme for indefinite linear systems in particulate flows , 2004 .

[32]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[33]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[34]  Ahmed Sameh,et al.  Hybrid Parallel Linear System Solvers , 1999 .

[35]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[36]  Tayfun E. Tezduyar,et al.  Methods for 3D computation of fluid-object interactions in spatially periodic flows , 2001 .

[37]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[38]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[39]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[40]  Ahmed H. Sameh,et al.  Parallel algorithms for indefinite linear systems , 2002, Parallel Comput..

[41]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[42]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[43]  Tayfun Tezduyar,et al.  Methods for parallel computation of complex flow problems , 1999, Parallel Comput..

[44]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[45]  Roy L. Bishop,et al.  Wakes in Liquid‐Liquid Systems , 1961 .

[46]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[47]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[48]  T. E. TezduyarAerospace,et al.  3d Simulation of Fluid-particle Interactions with the Number of Particles Reaching 100 , 1996 .

[49]  Jack Dongarra,et al.  ScaLAPACK user's guide , 1997 .

[50]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[51]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[52]  Joseph E. Flaherty,et al.  Parallel adaptive mesh refinement and redistribution on distributed memory computers , 1994 .

[53]  S. Johnsson,et al.  Experience with the conjugate gradient method for stress analysis on a data parallel supercomputer , 1989 .

[54]  Daniel R. Lynch,et al.  Unified approach to simulation on deforming elements with application to phase change problems , 1982 .

[55]  E. TezduyarT.,et al.  A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II , 1992 .

[56]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[57]  Thomas J. R. Hughes,et al.  An efficient communications strategy for finite element methods on the Connection Machine CM-5 system , 1994 .

[58]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[59]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .