Restoring Degraded Face Images: A Case Study in Matching Faxed, Printed, and Scanned Photos

We study the problem of restoring severely degraded face images such as images scanned from passport photos or images subjected to fax compression, downscaling, and printing. The purpose of this paper is to illustrate the complexity of face recognition in such realistic scenarios and to provide a viable solution to it. The contributions of this work are two-fold. First, a database of face images is assembled and used to illustrate the challenges associated with matching severely degraded face images. Second, a preprocessing scheme with low computational complexity is developed in order to eliminate the noise present in degraded images and restore their quality. An extensive experimental study is performed to establish that the proposed restoration scheme improves the quality of the ensuing face images while simultaneously improving the performance of face matching.

[1]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[2]  Pablo H. Hennings-Yeomans,et al.  Robust low-resolution face identification and verification using high-resolution features , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[3]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[5]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[6]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[7]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[8]  M. Ibrahim Sezan,et al.  Survey of recent developments in digital image restoration. , 1990 .

[9]  Michael Elad,et al.  Super-Resolution Reconstruction of Image Sequences , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[11]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[12]  Pablo H. Hennings-Yeomans,et al.  Simultaneous super-resolution and feature extraction for recognition of low-resolution faces , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Arun Ross,et al.  On matching digital face images against scanned passport photos , 2009, 2009 First IEEE International Conference on Biometrics, Identity and Security (BIdS).

[14]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 Large-Scale Experimental Results , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[16]  Bülent Sankur,et al.  Matching of faces in camera images and document photographs , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[17]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  S. Arumuga Perumal,et al.  Image De-noising using Discrete Wavelet transform , 2008 .

[19]  Mohammed Ghanbari,et al.  Scope of validity of PSNR in image/video quality assessment , 2008 .

[20]  Matti Pietikäinen,et al.  Face Recognition with Local Binary Patterns , 2004, ECCV.

[21]  Shaohua Zhou,et al.  Unconstrained Face Recognition , 2005 .

[22]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[23]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System: Its Purpose, Features, and Structure , 2003, ICVS.

[24]  Dianne P. O'Leary,et al.  Restoring Images Degraded by Spatially Variant Blur , 1998, SIAM J. Sci. Comput..

[25]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[26]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[27]  Matti Pietikäinen,et al.  Image Analysis with Local Binary Patterns , 2005, SCIA.

[28]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[30]  Rama Chellappa,et al.  Face Verification Across Age Progression , 2006, IEEE Transactions on Image Processing.

[31]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[32]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Takeo Kanade,et al.  Hallucinating faces , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[34]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[35]  Dmitry Samal,et al.  THREE APPROACHES FOR FACE RECOGNITION , 2002 .

[36]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[37]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.