Linear and inversive pseudorandom numbers for parallel and distributed simulation

We discuss the use and possible abuse of linear and inversive pseudorandom numbers (PRNs) in parallel and distributed environments. After an investigation of properties of PRNs which determine how these may be applied in such environments, we introduce a software package which provides a unified and easy to use approach to the generating and handling of parallel streams of such PRNs. Experimental results are conducted which describe the features of the software package and compare the performance of two selected types of pseudorandom number generators.

[1]  Srinivas Aluru,et al.  Lagged Fibonacci Random Number Generators for Distributed Memory Parallel Computers , 1997, J. Parallel Distributed Comput..

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[4]  A. De Matteis,et al.  Long-range correlations in linear and nonlinear random number generators , 1990, Parallel Comput..

[5]  Satish K. Tripathi,et al.  Parallel and distributed simulation of discrete event systems , 1994 .

[6]  Stefan Wegenkittl,et al.  Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.

[7]  Stefan Wegenkittl,et al.  A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .

[8]  N. M. Maclaren,et al.  The Generation of Multiple Independent Sequences of Pseudorandom Numbers , 1989 .

[9]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[10]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[11]  Norio Masuda,et al.  PRNGlib: A Parallel Random Number Generator Library , 1996 .

[12]  Srinivas Aluru,et al.  Parallel additive lagged Fibonacci random number generators , 1996, ICS '96.

[13]  Jack J. Dongarra,et al.  The PVM Concurrent Computing System: Evolution, Experiences, and Trends , 1994, Parallel Comput..

[14]  Michael Mascagni,et al.  A Fast, High Quality, and Reproducible Parallel Lagged-Fibonacci Pseudorandom Number Generator , 1995 .

[15]  Paul Coddington,et al.  Random Number Generators for Parallel Computers , 1997 .

[16]  Jürgen Eichenauer-Herrmann,et al.  A Unified Approach to the Analysis of Compound Pseudorandom Numbers , 1995 .

[17]  Harald Niederreiter,et al.  Parallel Streams of Nonlinear Congruential Pseudorandom Numbers , 1997 .

[18]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[19]  Srinivas Aluru,et al.  A random number generator for parallel computers , 1992, Parallel Comput..

[20]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[21]  A. De Matteis,et al.  Long-range correlation analysis of the Wichmann-Hill random number generator , 1993 .

[22]  William F. Eddy Random number generators for parallel processors , 1990 .

[23]  A. De Matteis,et al.  Controlling Correlations in Parallel Monte Carlo , 1995, Parallel Comput..

[24]  Robert F. Tichy,et al.  Quasi-Monte Carlo Methods for Numerical Integration: Comparison of Different Low Discrepancy Sequences , 1996, Monte Carlo Methods Appl..

[25]  Jun Makino,et al.  Parallelized Feedback Shift Register Generators of Pseudorandom Numbers , 1995, Parallel Comput..

[26]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[27]  A. Matteis,et al.  Parallelization of random number generators and long-range correlations , 1988 .

[28]  Pierre L'Ecuyer,et al.  A random number generator based on the combination of four LCGs , 1997 .