Transformation of optimal control problems with a state constraint avoiding interior boundary conditions

A well-known problem in constrained optimal control is the presence of interior boundary conditions for constrained arcs which require a-priori knowledge of the optimal solution. This paper presents a saturation function method to transform an optimal control problem (OCP) with a state constraint into an unconstrained OCP in new coordinates. The approach allows a tangential entry and exit of constrained arcs without involving interior boundary conditions. An additional regularization term is used in the new OCP to avoid singular arcs which correspond to constrained arcs in the original OCP. Interestingly, the continuity order of the saturation function plays an important role for the existence of bounded trajectories which represent inverse images of the optimal constrained solution in the original coordinates.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[3]  J. Frédéric Bonnans,et al.  No-gap second-order optimality conditions for optimal control problems with a single state constraint and control , 2009, Math. Program..

[4]  N. Petit,et al.  Incorporating a class of constraints into the dynamics of optimal control problems , 2009 .

[5]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[6]  D. Jacobson,et al.  New necessary conditions of optimality for control problems with state-variable inequality constraints , 1971 .

[7]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[8]  Hans Seywald,et al.  Trajectory optimization based on differential inclusion , 1994 .

[9]  H. J. Pesch A Practical Guide to the Solution of Real-Life Optimal Control Problems , 1994 .

[10]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[11]  N. Petit,et al.  Constructive Methods for Initialization and Handling Mixed State-Input Constraints in Optimal Control , 2008 .

[12]  Veit Hagenmeyer,et al.  A new approach to inversion-based feedforward control design for nonlinear systems , 2005, Autom..

[13]  H. J. Pesch,et al.  Minimizing the maximum heating of a re-entering space shuttle : An optimal control problem with multiple control constraints , 1996 .

[14]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[15]  N. Faiz,et al.  Optimization of a Class of Nonlinear Dynamic Systems: New Efficient Method without Lagrange Multipliers , 1998 .

[16]  Emmanuel Trélat,et al.  Optimal Control with State Constraints and the Space Shuttle Re-entry Problem , 2003 .

[17]  Aurelio Piazzi,et al.  Optimal noncausal set-point regulation of scalar systems , 2001, Autom..

[18]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[19]  R. Bhattacharya,et al.  OPTRAGEN: A MATLAB Toolbox for Optimal Trajectory Generation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[20]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .