Chemometric Applications To A Complex Classification Problem: Forensic Fire Debris Analysis

[1]  P. Harrington,et al.  Ignitable liquid identification using gas chromatography/mass spectrometry data by projected difference resolution mapping and fuzzy rule-building expert system classification. , 2012, Forensic science international.

[2]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[3]  Dzulkiflee Ismail,et al.  Classification and source determination of medium petroleum distillates by chemometric and artificial neural networks: a self organizing feature approach. , 2011, Analytical chemistry.

[4]  Margaret A. Nemeth,et al.  Applied Multivariate Methods for Data Analysis , 1998, Technometrics.

[5]  Roman M. Balabin,et al.  Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra , 2008 .

[6]  John D. DeHaan Ph.D. Fabc FSSDip,et al.  Kirk's Fire Investigation , 2011 .

[7]  Kelly McHugh Determining The Presence Of An Ignitable Liquid Residue In Fire Debris Samples Utilizing Target Factor Analysis , 2010 .

[8]  Gregory A. Mack,et al.  Chemometrics: A Textbook , 1990 .

[9]  Mary R. Williams,et al.  Progress Toward the Determination of Correct Classification Rates in Fire Debris Analysis II: Utilizing Soft Independent Modeling of Class Analogy (SIMCA) , 2014, Journal of forensic sciences.

[10]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[11]  Ronald L. Kelly,et al.  Accelerant Identification in Fire Debris by Gas Chromatography/Mass Spectrometry Techniques , 1984 .

[12]  Desire L. Massart,et al.  Projection methods in chemistry , 2003 .

[13]  Stacy-Ann Barshick,et al.  ANALYSIS OF ACCELERANTS AND FIRE DEBRIS USING AROMA DETECTION TECHNOLOGY , 1997 .

[14]  E. du Pasquier,et al.  Chemical fingerprinting of gasoline. 2. Comparison of unevaporated and evaporated automotive gasoline samples. , 2004, Forensic science international.

[15]  Philip Doble,et al.  Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks. , 2003, Forensic science international.

[16]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[17]  Fraga,et al.  Comprehensive two-dimensional gas chromatography and chemometrics for the high-speed quantitative analysis of aromatic isomers in a jet fuel using the standard addition method and an objective retention time alignment algorithm , 2000, Analytical chemistry.

[18]  Mia Hubert,et al.  LIBRA: a MATLAB library for robust analysis , 2005 .

[19]  J. McDevitt,et al.  Differential receptors create patterns diagnostic for ATP and GTP. , 2003, Journal of the American Chemical Society.

[20]  Stanley L. Grotch,et al.  Matching of mass spectra when peak height is encoded to one bit , 1970 .

[21]  Michael E. Sigman,et al.  Ignitable Liquid Classification and Identification Using the Summed-Ion Mass Spectrum , 2008 .

[22]  Peter B Harrington,et al.  Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris. , 2007, Analytical chemistry.

[23]  Tommi S. Jaakkola,et al.  Fast optimal leaf ordering for hierarchical clustering , 2001, ISMB.

[24]  E. du Pasquier,et al.  Chemical fingerprinting of unevaporated automotive gasoline samples. , 2003, Forensic science international.

[25]  Charles K. Bayne,et al.  Multivariate Analysis of Quality: An Introduction , 2002, Technometrics.

[26]  V. McGuffin,et al.  Effect of evaporation and matrix interferences on the association of simulated ignitable liquid residues to the corresponding liquid standard. , 2012, Forensic science international.

[27]  David E. Booth,et al.  Chemometrics: Data Analysis for the Laboratory and Chemical Plant , 2004, Technometrics.

[28]  M. Hubert,et al.  Robust classification in high dimensions based on the SIMCA Method , 2005 .

[29]  B. W. Wright,et al.  Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecewise alignment algorithm. , 2007, Journal of chromatography. A.

[30]  Andre A. Moenssens Scientific Evidence in Civil and Criminal Cases , 2007 .

[31]  David Lucy,et al.  Introduction to Statistics for Forensic Scientists , 2005 .

[32]  R. Smith,et al.  Arson analysis by mass chromatography , 1982 .

[33]  James R. Schott,et al.  Principles of Multivariate Analysis: A User's Perspective , 2002 .

[34]  Kevin J. Johnson,et al.  Pattern recognition of jet fuels: comprehensive GC×GC with ANOVA-based feature selection and principal component analysis , 2002 .

[35]  D. L. Massart,et al.  Decision criteria for soft independent modelling of class analogy applied to near infrared data , 1999 .

[36]  K. Savage,et al.  Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. , 2010, Analytical chemistry.

[37]  Edward G. Bartick,et al.  Discrimination of Forensic Analytical Chemical Data Using Multivariate Statistics , 2007 .

[38]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[39]  P. L. Wineman,et al.  Detection of petroleum-based accelerants in fire debris by target compound gas chromatography/mass spectrometry , 1991 .

[40]  J. K. Hardy,et al.  Accelerant classification by gas chromatography/mass spectrometry and multivariate pattern recognition , 2000 .

[41]  Kevin J Johnson,et al.  Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis. , 2005, Journal of chromatography. A.

[42]  J. González-Rodríguez,et al.  Fire debris analysis by Raman spectroscopy and chemometrics , 2011 .

[43]  Peter B Harrington,et al.  Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution , 2009, Analytical and bioanalytical chemistry.

[44]  Svante Wold,et al.  Pattern recognition by means of disjoint principal components models , 1976, Pattern Recognit..

[45]  Jose R. Almirall,et al.  Analysis and interpretation of fire scene evidence , 2004 .

[46]  Steven D. Brown Introduction to Multivariate Statistical Analysis in Chemometrics , 2010 .

[47]  Richard G. Brereton,et al.  Multivariate Pattern Recognition in Chemometrics: Illustrated by Case Studies , 1992 .

[48]  G. Zadora,et al.  Application of Head-Space Analysis with Passive Adsorption for Forensic Purposes in the Automated Thermal Desorption-Gas Chromatography-Mass Spectrometry System , 2004 .

[49]  V. McGuffin,et al.  Association and discrimination of diesel fuels using chemometric procedures , 2009, Analytical and bioanalytical chemistry.

[50]  Mary R. Williams,et al.  Progress Toward the Determination of Correct Classification Rates in Fire Debris Analysis , , , 2013, Journal of forensic sciences.

[51]  Chris W. Brown,et al.  Chemical information based on neural network processing of near-IR spectra , 1998 .

[52]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[53]  J. Harynuk,et al.  Automated optimization and construction of chemometric models based on highly variable raw chromatographic data. , 2011, Analytica chimica acta.

[54]  Roman M. Balabin,et al.  Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques. , 2010, Analytica chimica acta.

[55]  G. W. Small Spectrometric Identification of Organic Compounds , 1992 .