Forbidden Hypermatrices Imply General Bounds on Induced Forbidden Subposet Problems

We prove that for every poset $P$, there is a constant $C$ such that the size of any family of subsets of $[n]$ that does not contain $P$ as an induced subposet is at most $C{\binom{n}{\lfloor\frac{n}{2}\rfloor}}$, settling a conjecture of Katona, and Lu and Milans. We obtain this bound by establishing a connection to the theory of forbidden submatrices and then applying a higher dimensional variant of the Marcus-Tardos theorem, proved by Klazar and Marcus. We also give a new proof of their result.

[1]  Abhishek Methuku,et al.  An upper bound on the size of diamond-free families of sets , 2018, J. Comb. Theory, Ser. A.

[2]  Balázs Keszegh,et al.  On linear forbidden submatrices , 2009, J. Comb. Theory, Ser. A.

[3]  Linyuan Lu,et al.  On Families of Subsets With a Forbidden Subposet , 2008, Combinatorics, Probability and Computing.

[4]  Martin Klazar,et al.  Extensions of the linear bound in the Füredi-Hajnal conjecture , 2007, Adv. Appl. Math..

[5]  Jerrold R. Griggs,et al.  Progress on poset-free families of subsets , 2016 .

[6]  Linyuan Lu,et al.  Diamond-free families , 2010, J. Comb. Theory, Ser. A.

[7]  Peter M. Tian,et al.  Extremal functions of forbidden multidimensional matrices , 2015, Discret. Math..

[8]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[9]  Arès Méroueh Lubell mass and induced partially ordered sets , 2015, 1506.07056.

[10]  Abhishek Methuku,et al.  An Improvement of the General Bound on the Largest Family of Subsets Avoiding a Subposet , 2017, Order.

[11]  Seth Pettie,et al.  On nonlinear forbidden 0-1 matrices: a refutation of a Füredi-Hajnal conjecture , 2010, SODA '10.

[12]  Jacob Fox,et al.  Stanley-Wilf limits are typically exponential , 2013, ArXiv.

[13]  Ervin Györi,et al.  An Extremal Problem on Sparse 0-1 Matrices , 1991, SIAM J. Discret. Math..

[14]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[15]  Seth Pettie,et al.  Degrees of nonlinearity in forbidden 0-1 matrix problems , 2011, Discret. Math..

[16]  G. Katona,et al.  Extremal problems with excluded subgraphs in the n-cube , 1983 .

[17]  Annalisa De Bonis,et al.  Largest Families Without an r-Fork , 2007, Order.

[18]  Gábor Tardos,et al.  On 0-1 matrices and small excluded submatrices , 2005, J. Comb. Theory, Ser. A.

[19]  Tao Jiang,et al.  Set Families With a Forbidden Induced Subposet , 2012, Comb. Probab. Comput..

[20]  Balázs Patkós Induced and Non-induced Forbidden Subposet Problems , 2015, Electron. J. Comb..

[21]  Annalisa De Bonis,et al.  Largest family without A ∪ B ⊆ C ∩ D , 2005 .

[22]  Martin Klazar,et al.  The Füredi-Hajnal Conjecture Implies the Stanley-Wilf Conjecture , 2000 .

[23]  Hai Tran Thanh,et al.  An Extremal Problem with Excluded Subposet in the Boolean Lattice , 1998 .

[24]  H. Whitney,et al.  An inequality related to the isoperimetric inequality , 1949 .

[25]  Hong-Bin Chen,et al.  A Note on the Largest Size of Families of Sets with a Forbidden Poset , 2014, Order.

[26]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[27]  Linyuan Lu,et al.  Set families with forbidden subposets , 2014, J. Comb. Theory, Ser. A.

[28]  Seth Pettie,et al.  Generalized Davenport-Schinzel sequences and their 0-1 matrix counterparts , 2011, J. Comb. Theory, Ser. A.

[29]  Gyula O. H. Katona,et al.  No four subsets forming an N , 2008, J. Comb. Theory, Ser. A.

[30]  János Pach,et al.  Forbidden paths and cycles in ordered graphs and matrices , 2006 .

[31]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[32]  Martin Klazar,et al.  Generalized Davenport-Schinzel sequences , 1994, Comb..

[33]  Dániel T. Nagy,et al.  The method of double chains for largest families with excluded subposets , 2013, Electron. J. Graph Theory Appl..

[34]  Boris Bukh,et al.  Set Families with a Forbidden Subposet , 2008, Electron. J. Comb..

[35]  Gyula O. H. Katona,et al.  Bounds on Maximal Families of Sets Not Containing Three Sets with A ∩ B ⊂ C, A ⊄ B , 2008 .

[36]  Ryan R. Martin,et al.  On diamond-free subposets of the Boolean lattice , 2013, J. Comb. Theory, Ser. A.

[37]  Gyula O. H. Katona Forbidden Intersection Patterns in the Families of Subsets (Introducing a Method) , 2008 .

[38]  Gyula O. H. Katona,et al.  Horizons of combinatorics , 2008 .

[39]  Gyula O. H. Katona A simple proof of the Erd?s-Chao Ko-Rado theorem , 1972 .