Formation and propagation of matter-wave soliton trains

Attraction between the atoms of a Bose–Einstein condensate renders it unstable to collapse, although a condensate with a limited number of atoms can be stabilized by confinement in an atom trap. However, beyond this number the condensate collapses. Condensates constrained to one-dimensional motion with attractive interactions are predicted to form stable solitons, in which the attractive forces exactly compensate for wave-packet dispersion. Here we report the formation of bright solitons of 7Li atoms in a quasi-one-dimensional optical trap, by magnetically tuning the interactions in a stable Bose–Einstein condensate from repulsive to attractive. The solitons are set in motion by offsetting the optical potential, and are observed to propagate in the potential for many oscillatory cycles without spreading. We observe a soliton train, containing many solitons; repulsive interactions between neighbouring solitons are inferred from their motion.

[1]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[2]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[3]  P C Haljan,et al.  Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. , 2001, Physical review letters.

[4]  Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions , 2001, QELS 2001.

[5]  Magnetic field dependence of ultracold inelastic collisions near a feshbach resonance , 2000, Physical review letters.

[6]  M. Kessler,et al.  The Infrared Space Observatory (ISO) mission. , 1996 .

[7]  Carl E. Wieman,et al.  Dynamics of collapsing and exploding Bose–Einstein condensates , 2001, Nature.

[8]  Mark A. Miller,et al.  Nitrogen Speciation in a 15N-enriched Interplanetary Dust Particle , 1997 .

[9]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[10]  J. Bouwman,et al.  The composition of the circumstellar dust around the Herbig Ae stars AB Aur and HD 163296 , 2000 .

[11]  Christa Kilian-Hatz Universality and diversity , 2001 .

[12]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[13]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[14]  J. C. Wang,et al.  Molecular cytogenetic characterization of 18;21 whole arm translocation associated with monosomy 18p. , 1997, American journal of medical genetics.

[15]  H. Herrero,et al.  Bose-Einstein solitons in highly asymmetric traps , 1998 .

[16]  M. Kasevich Atom interferometry with Bose–Einstein condensed atoms , 2001 .

[17]  Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond , 2000, cond-mat/0004287.

[18]  J. Gordon Interaction forces among solitons in optical fibers. , 1983, Optics letters.

[19]  C. Sackett,et al.  MEASUREMENTS OF COLLECTIVE COLLAPSE IN A BOSE-EINSTEIN CONDENSATE WITH ATTRACTIVE INTERACTIONS , 1999 .

[20]  Phillips,et al.  Generating solitons by phase engineering of a bose-einstein condensate , 2000, Science.

[21]  S. Messenger,et al.  Analysis of a deuterium‐rich interplanetary dust particle (IDP) and implications for presolar material in IDPs , 2000 .

[22]  Direct observation of growth and collapse of a Bose–Einstein condensate with attractive interactions , 2000, Nature.

[23]  C. Seab,et al.  Interstellar abundances in dense, moderately reddened lines of sight. I - Observational evidence for density-dependent depletion , 1986 .

[24]  J. Bouwman,et al.  ISO spectroscopy of circumstellar dust in the Herbig Ae systems AB Aur and HD 163296 , 2000, astro-ph/0002440.

[25]  Randall G. Hulet,et al.  Observation of Fermi Pressure in a Gas of Trapped Atoms , 2001, Science.

[26]  Stegeman,et al.  Optical Spatial Solitons and Their Interactions: Universality and Diversity. , 1999, Science.

[27]  C. Sackett,et al.  Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number , 1997 .

[28]  Hasegawa,et al.  Observation of modulational instability in optical fibers. , 1986, Physical review letters.

[29]  G Ferrari,et al.  Quasipure Bose-Einstein condensate immersed in a Fermi sea. , 2001, Physical review letters.

[30]  Yuri S. Kivshar,et al.  Nonlinear modes of a macroscopic quantum oscillator , 1999 .

[31]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[32]  Th. Henning,et al.  Optical properties of oxide dust grains. , 1995 .

[33]  A. Tielens,et al.  Solid Carbonyl Sulfide (OCS) in Dense Molecular Clouds , 1997 .

[34]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[35]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[36]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[38]  Z. Dai,et al.  Iron-nickel sulfides in anhydrous interplanetary dust particles , 2001 .

[39]  Alexander G. G. M. Tielens,et al.  ISO Spectroscopy of Circumstellar Dust , 2000 .

[40]  G. Shlyapnikov,et al.  Stability of standing matter waves in a trap , 1998, cond-mat/9811408.

[41]  Verhaar,et al.  Threshold and resonance phenomena in ultracold ground-state collisions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[42]  D. Vaughan,et al.  Kinetics of the marcasite-pyrite transformation; an infrared spectroscopic study , 1992 .

[43]  Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911177.

[44]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[45]  D. Mckay,et al.  Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction , 1996 .