Remote ischemic preconditioning protects against spinal cord ischemia–reperfusion injury in mice by activating NMDAR/AMPK/PGC-1α/SIRT3 signaling

[1]  A. Zullo,et al.  Redox Homeostasis in Cardiovascular Disease: The Role of Mitochondrial Sirtuins , 2022, Frontiers in Endocrinology.

[2]  Changzhen Ren,et al.  SIRT3 improves bone regeneration and rescues diabetic fracture healing by regulating oxidative stress. , 2022, Biochemical and biophysical research communications.

[3]  Yanling Yin,et al.  Oxygen–Glucose Deprivation/Reperfusion-Induced Sirt3 Reduction Facilitated Neuronal Injuries in an Apoptosis-Dependent Manner During Prolonged Reperfusion , 2022, Neurochemical Research.

[4]  Jin Fan,et al.  USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1 , 2021, Cell Death & Differentiation.

[5]  Zhengliang Ma,et al.  Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury , 2021, Molecular Neurobiology.

[6]  Xiang Li,et al.  MCU-Dependent mROS Generation Regulates Cell Metabolism and Cell Death Modulated by the AMPK/PGC-1α/SIRT3 Signaling Pathway , 2021, Frontiers in Medicine.

[7]  Meiling Wu,et al.  Compartmentally scavenging hepatic oxidants through AMPK/SIRT3-PGC1α axis improves mitochondrial biogenesis and glucose catabolism. , 2021, Free radical biology & medicine.

[8]  B. Shen,et al.  Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis. , 2021, Pharmacological research.

[9]  A. Chatterjee,et al.  A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway , 2020, Journal of Cell Communication and Signaling.

[10]  Yuqing Wu,et al.  SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats , 2020, Regional Anesthesia & Pain Medicine.

[11]  E. Park,et al.  Honokiol Protects the Kidney from Renal Ischemia and Reperfusion Injury by Upregulating the Glutathione Biosynthetic Enzymes , 2020, Biomedicines.

[12]  Yan Li,et al.  Hypoxic preconditioning combined with curcumin promotes cell survival and mitochondrial quality of bone marrow mesenchymal stem cells, and accelerates cutaneous wound healing via PGC-1α/SIRT3/ HIF-1α signaling. , 2020, Free radical biology & medicine.

[13]  Nirmal Singh,et al.  Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: Preclinical evidence and mechanisms. , 2020, European journal of pharmacology.

[14]  K. Suehiro,et al.  Protective effects of remote ischemic preconditioning against spinal cord ischemia-reperfusion injury in rats. , 2020, The Journal of thoracic and cardiovascular surgery.

[15]  Jin Fan,et al.  The protective effort of GPCR kinase 2–interacting protein‐1 in neurons via promoting Beclin1‐Parkin induced mitophagy at the early stage of spinal cord ischemia‐reperfusion injury , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  Z. Qin,et al.  Exogenous NADPH ameliorates myocardial ischemia–reperfusion injury in rats through activating AMPK/mTOR pathway , 2019, Acta Pharmacologica Sinica.

[17]  E. Gao,et al.  MCUB Regulates the Molecular Composition of the Mitochondrial Calcium Uniporter Channel to Limit Mitochondrial Calcium Overload During Stress. , 2019, Circulation.

[18]  Jihong Yao,et al.  SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury , 2019, Redox biology.

[19]  Mingyao Liu,et al.  SENP1-Sirt3 Signaling Controls Mitochondrial Protein Acetylation and Metabolism. , 2019, Molecular cell.

[20]  Xianbao Wang,et al.  Honokiol post-treatment ameliorates myocardial ischemia/reperfusion injury by enhancing autophagic flux and reducing intracellular ROS production. , 2019, Chemico-biological interactions.

[21]  M. Mahomoodally,et al.  Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone , 2019, Cancer.

[22]  M. D. Morsy,et al.  Two episodes of remote ischemia preconditioning improve motor and sensory function of hind limbs after spinal cord ischemic injury , 2019, The journal of spinal cord medicine.

[23]  S. Srikantan,et al.  Blockade of MCU-Mediated Ca2+ Uptake Perturbs Lipid Metabolism via PP4-Dependent AMPK Dephosphorylation. , 2019, Cell reports.

[24]  C. Rickards,et al.  Ischaemic and hypoxic conditioning: potential for protection of vital organs , 2019, Experimental physiology.

[25]  Yi Fang,et al.  Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21 , 2019, Theranostics.

[26]  G. Farjah,et al.  Protective Effect of Contralateral, Ipsilateral, and Bilateral Remote Ischemic Preconditioning on Spinal Cord Ischemia Reperfusion Injury in Rats. , 2019, Turkish neurosurgery.

[27]  Xiaolei Zhang,et al.  Small molecule natural compound agonist of SIRT3 as a therapeutic target for the treatment of intervertebral disc degeneration , 2018, Experimental & Molecular Medicine.

[28]  W. Liu,et al.  Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration , 2018, Redox biology.

[29]  Hao Zhou,et al.  Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy , 2018, Redox biology.

[30]  P. McLean,et al.  Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway , 2018, bioRxiv.

[31]  Xia Chen,et al.  Stat5-dependent cardioprotection in late remote ischaemia preconditioning , 2018, Cardiovascular research.

[32]  G. Heusch,et al.  Persistent Survival Benefit From Remote Ischemic Pre-Conditioning in Patients Undergoing Coronary Artery Bypass Surgery. , 2018, Journal of the American College of Cardiology.

[33]  Christian M. Metallo,et al.  The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. , 2018, Molecular cell.

[34]  Jinwoo Hong,et al.  Emergence of Ad-Mediated Combination Therapy Against Cancer: What to Expect? , 2017, Current Cancer Drug Targets.

[35]  Y. Mizukami,et al.  Comparison of the protective effects of direct ischemic preconditioning and remote ischemic preconditioning in a rabbit model of transient spinal cord ischemia , 2018, Journal of Anesthesia.

[36]  Y. Li,et al.  Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury , 2017, Science Translational Medicine.

[37]  P. Li,et al.  Mitochondrial biogenesis in neurodegeneration , 2017, Journal of neuroscience research.

[38]  M. Yunoki,et al.  Ischemic Tolerance of the Brain and Spinal Cord: A Review , 2017, Neurologia medico-chirurgica.

[39]  N. Chattipakorn,et al.  Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury , 2017, Journal of cellular and molecular medicine.

[40]  E. Gao,et al.  Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3‐dependent regulation of oxidative stress and apoptosis , 2017, Journal of pineal research.

[41]  Yun-Mei Wang,et al.  ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway , 2017, Neurochemistry International.

[42]  L. Toledo-Pereyra,et al.  Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion , 2017, EXCLI journal.

[43]  T. Starck,et al.  Exploring Spinal Cord Protection by Remote Ischemic Preconditioning: An Experimental Study. , 2017, The Annals of thoracic surgery.

[44]  O. Ziff,et al.  Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis , 2016, Cardiovascular research.

[45]  Qian Ding,et al.  Remote Limb Ischemic Preconditioning Protects Rats Against Cerebral Ischemia via HIF-1α/AMPK/HSP70 Pathway , 2017, Cellular and Molecular Neurobiology.

[46]  Ji Hu,et al.  Advance in spinal cord ischemia reperfusion injury: Blood-spinal cord barrier and remote ischemic preconditioning. , 2016, Life sciences.

[47]  D. Yellon,et al.  Ischaemic conditioning and reperfusion injury , 2016, Nature Reviews Cardiology.

[48]  Mark D. Huffman,et al.  Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association , 2016, Circulation.

[49]  M. Fehlings,et al.  Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy , 2015, Science Translational Medicine.

[50]  M. Mi,et al.  Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway , 2015, Endocrine.

[51]  Dean P. Jones,et al.  Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial SIRT3 , 2015, Nature Communications.

[52]  R. Korthuis,et al.  Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning , 2014, Redox biology.

[53]  E. Caglayan,et al.  Remote ischemic preconditioning and renoprotection: from myth to a novel therapeutic option? , 2014, Journal of the American Society of Nephrology : JASN.

[54]  E. Bossy‐Wetzel,et al.  Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration , 2013, Front. Aging Neurosci..

[55]  Ling Wei,et al.  Neuro-Modulating Effects of Honokiol: A Review , 2013, Front. Neurol..

[56]  Qi Ding,et al.  Involvement of the GluN2A and GluN2B Subunits in Synaptic and Extrasynaptic N-methyl-d-aspartate Receptor Function and Neuronal Excitotoxicity* , 2013, The Journal of Biological Chemistry.

[57]  Zhenyu Hu,et al.  Honokiol protects brain against ischemia–reperfusion injury in rats through disrupting PSD95–nNOS interaction , 2013, Brain Research.

[58]  K. Kitagawa Ischemic tolerance in the brain: Endogenous adaptive machinery against ischemic stress , 2012, Journal of neuroscience research.

[59]  Yael Bromberg,et al.  Molecular Alterations Associated with the NMDA Preconditioning-Induced Neuroprotective Mechanism Against Glutamate Cytotoxicity , 2012, Journal of Molecular Neuroscience.

[60]  D. Gerrard,et al.  Chronic high cytosolic calcium decreases AICAR-induced AMPK activity via calcium/calmodulin activated protein kinase II signaling cascade. , 2011, Cell calcium.

[61]  V. Tsang,et al.  Remote Ischemic Preconditioning Protects the Brain Against Injury After Hypothermic Circulatory Arrest , 2011, Circulation.

[62]  Yael Bromberg,et al.  Neuroprotection by NMDA Preconditioning Against Glutamate Cytotoxicity is Mediated Through Activation of ERK 1/2, Inactivation of JNK, and by Prevention of Glutamate-Induced CREB Inactivation , 2011, Journal of Molecular Neuroscience.

[63]  E. Verdin,et al.  Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. , 2010, Trends in biochemical sciences.

[64]  Lin-Shiau Shoei-Yn,et al.  Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. , 2010, Behavioral neuroscience.

[65]  Huabing Zhang,et al.  Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis , 2010, PloS one.

[66]  L. Xiong,et al.  Limb Remote Ischemic Preconditioning Protects the Spinal Cord from Ischemia–Reperfusion Injury: A Newly Identified Nonneuronal but Reactive Oxygen Species–dependent Pathway , 2010, Anesthesiology.

[67]  L. McCullough,et al.  Effects of AMP-Activated Protein Kinase in Cerebral Ischemia , 2010, Journal of Cerebral Blood Flow and Metabolism.

[68]  T. Theruvath,et al.  Mitochondrial calcium and the permeability transition in cell death. , 2009, Biochimica et biophysica acta.

[69]  Gene Kim,et al.  Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. , 2009, The Journal of clinical investigation.

[70]  Q. Tong,et al.  Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle , 2009, Aging.

[71]  Z. Qin,et al.  The neuroprotective mechanism of brain ischemic preconditioning , 2009, Acta Pharmacologica Sinica.

[72]  J. Arbiser,et al.  Honokiol, a multifunctional antiangiogenic and antitumor agent. , 2009, Antioxidants & redox signaling.

[73]  M. Banach,et al.  Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: association with heat shock protein expression. , 2008, Folia neuropathologica.

[74]  B. Lytle,et al.  Contemporary Analysis of Descending Thoracic and Thoracoabdominal Aneurysm Repair: A Comparison of Endovascular and Open Techniques , 2008, Circulation.

[75]  P. Gean,et al.  Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons. , 2008, European journal of pharmacology.

[76]  Philip R. Gafken,et al.  Ubiquitin–Proteasome-Mediated Synaptic Reorganization: A Novel Mechanism Underlying Rapid Ischemic Tolerance , 2008, The Journal of Neuroscience.

[77]  H. Moriya,et al.  Clinical Results of Surgery for Thoracic Myelopathy Caused by Ossification of the Posterior Longitudinal Ligament: Operative Indication of Posterior Decompression With Instrumented Fusion , 2006, Spine.

[78]  Aileen J Anderson,et al.  Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. , 2006, Journal of neurotrauma.

[79]  L. Xiong,et al.  Hyperbaric Oxygen Preconditioning Induces Tolerance against Spinal Cord Ischemia by Upregulation of Antioxidant Enzymes in Rabbits , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[80]  J. Deanfield,et al.  Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. , 2005, Journal of the American College of Cardiology.

[81]  D. Yellon,et al.  Characterisation of the infarct-limiting effect of delayed preconditioning: timecourse and dose-dependency studies in rabbit myocardium , 1997, Basic Research in Cardiology.

[82]  A. Marini,et al.  N‐Methyl‐d‐aspartate and TrkB Receptor Activation in Cerebellar Granule Cells , 2003, Annals of the New York Academy of Sciences.

[83]  T. Sick,et al.  εPKC Is Required for the Induction of Tolerance by Ischemic and NMDA-Mediated Preconditioning in the Organotypic Hippocampal Slice , 2003, The Journal of Neuroscience.

[84]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[85]  G. Shulman,et al.  AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  H. Bading,et al.  Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways , 2002, Nature Neuroscience.

[87]  M. Sans,et al.  Preconditioning protects against systemic disorders associated with hepatic ischemia‐reperfusion through blockade of tumor necrosis factor–induced P‐selectin up‐regulation in the rat , 2001, Hepatology.

[88]  M. O'Neill,et al.  NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus. , 1999, European journal of pharmacology.

[89]  D. Choi,et al.  Ischemic Tolerance in Murine Cortical Cell Culture: Critical Role for NMDA Receptors , 1999, The Journal of Neuroscience.

[90]  J. Coselli,et al.  Experience with 1509 patients undergoing thoracoabdominal aortic operations. , 1993, Journal of vascular surgery.

[91]  S. Paul,et al.  N-methyl-D-aspartate receptor-mediated neuroprotection in cerebellar granule cells requires new RNA and protein synthesis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.