Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking

Abstract Ordered mesoporous TiO2 films with increased pore connectivity are introduced in this work. Crack generation was accomplished by thermal shock using rapid thermal annealing to obtain a connected pore structure. Due to the increased pore connectivity caused by crack generation, the specific surface area of mesoporous TiO2 films increased by 2.6 times. As specific surface area increased, gas sensing properties of the ordered mesoporous TiO2 film were enhanced, thus, ordered mesoporous TiO2 films with increased pore connectivity are ideal candidates for gas sensor applications.

[1]  Eyal Zussman,et al.  Processing-Microstructure-Properties Correlation of Ultrasensitive Gas Sensors Produced by Electrospinning , 2009 .

[2]  Hyung‐Ho Park,et al.  Investigation of the properties of organically modified ordered mesoporous silica films. , 2008, Journal of colloid and interface science.

[3]  H. Chu,et al.  Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers , 2010 .

[4]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[5]  Giorgio Sberveglieri,et al.  Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays , 2012, Nanotechnology.

[6]  Prabir K. Dutta,et al.  Composite n–p semiconducting titanium oxides as gas sensors , 2001 .

[7]  Ho Won Jang,et al.  Analysis of heat transfer in ordered and disordered mesoporous TiO2 films by finite element analysis , 2011 .

[8]  Haoshen Zhou,et al.  Fabrication of ordered mesoporous thin films for optical waveguiding and interferometric chemical sensing. , 2006, The journal of physical chemistry. B.

[9]  Galo J. A. A. Soler-Illia,et al.  Fundamentals of Mesostructuring Through Evaporation‐Induced Self‐Assembly , 2004 .

[10]  G. Martinelli,et al.  Preparation of nanosized titania thick and thin films as gas-sensors , 1999 .

[11]  Yucheng Ding,et al.  Thermal shock induced nanocrack as high efficiency surface conduction electron emitter , 2011 .

[12]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[13]  M. Baklanov,et al.  Non-destructive characterisation of porous low-k dielectric films , 2002 .

[14]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[15]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[16]  Ho Won Jang,et al.  Embossed TiO2 Thin Films with Tailored Links between Hollow Hemispheres: Synthesis and Gas-Sensing Properties , 2011 .

[17]  E. Bylaska,et al.  Kinetic Evidence for Five-Coordination in AlOH(aq)2+ Ion , 2005, Science.

[18]  Robert J. Davis,et al.  Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves , 1998 .

[19]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[20]  Alexey Bezryadin,et al.  Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters , 1997 .

[21]  Partha Mitra,et al.  ZnO thin film sensor , 1998 .

[22]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[23]  H. Elbel Open pore structure analysis of lithium bearing ceramics , 1988 .

[24]  Zhi Chen,et al.  High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide , 2009 .

[25]  N. He,et al.  Preparation and characterization of mesostructured titanium dioxide and its application as a photocatalyst for the wastewater treatment , 1999 .

[26]  Luke P. Lee,et al.  Minimization of electrode polarization effect by nanogap electrodes for biosensor applications , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[27]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[28]  Biao Wang,et al.  Improved and excellent CO sensing properties of Cu-doped TiO2 nanofibers , 2010 .

[29]  A Paul Alivisatos,et al.  A single-electron transistor made from a cadmium selenide nanocrystal , 1997, Nature.

[30]  D. On A Simple Route for the Synthesis of Mesostructured Lamellar and Hexagonal Phosphorus-Free Titania (TiO2) , 1999 .

[31]  Nobuo Takeda,et al.  Application of chirped fiber Bragg grating sensors for identification of crack locations in composites , 2004 .

[32]  Amit Bandyopadhyay,et al.  Titanium dioxide thin films for high temperature gas sensors , 2010 .

[33]  E. B. Gowd,et al.  In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films , 2010 .

[34]  F. S. Ortega,et al.  Properties of Highly Porous Hydroxyapatite Obtained by the Gelcasting of Foams , 2000 .

[35]  A. Yee,et al.  Determination of Pore Size in Mesoporous Thin Films from the Annihilation Lifetime of Positronium , 2001 .

[36]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[37]  M. Hon,et al.  Synthesis of highly ordered and worm-like mesoporous TiO2 assisted by tri-block copolymer , 2008 .

[38]  M. Ghorbani,et al.  Comparison of single and binary oxide sol–gel gas sensors based on titania , 2008 .