There are only finitely many Diophantine quintuples
暂无分享,去创建一个
[1] Andrej Dujella,et al. An Absolute Bound for the Size of Diophantine m-Tuples , 2001 .
[2] Kiran S. Kedlaya. Solving constrained Pell equations , 1998, Math. Comput..
[3] Attila Pethö,et al. A Generalization of a Theorem of Baker and Davenport , 1998 .
[4] J. Coates,et al. Integer points on curves of genus 1 , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] P. Gibbs. A Generalised Stern-Brocot Tree from Regular Diophantine Quadruples , 1999, math/9903035.
[6] Wolfgang M. Schmidt,et al. Integer points on curves of genus 1 , 1992 .
[7] Michael A. Bennett,et al. ON THE NUMBER OF SOLUTIONS OF SIMULTANEOUS PELL EQUATIONS , 2006 .
[8] Gisbert Wüstholz,et al. Logarithmic forms and group varieties. , 1993 .
[9] A. Pethö,et al. On the resolution of index form equations , 1991, ISSAC '91.
[10] Andrej Dujella,et al. A proof of the Hoggatt-Bergum conjecture , 1999 .
[11] Andrej Dujella,et al. The problem of the extension of a parametric family of Diophantine triples , 1997, Publicationes Mathematicae Debrecen.
[12] On a set of diophantine equations , 1968 .
[13] G. Grimmett. Statistics of sieves and square-free numbers , 1991 .
[14] Some Rational Diophantine Sextuples , 1999, math/9902081.
[15] E. Matveev,et al. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .
[16] H. Davenport,et al. THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .
[17] A. Pethö,et al. On the Resolution of Index Form Equations in Biquadratic Number-Fields: III. The Bicyclic Biquadratic Case , 1995 .
[18] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[19] A. Baker. The Diophantine Equation y2 = ax3+bx2+cx+d , 1968 .