Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically Sharp V-Grooves on SOI

Ultrashort-channel junctionless FETs (JL-FETs) were fabricated on silicon-on-insulator substrates utilizing atomically sharp V-shaped grooves produced by anisotropic wet etching. The channel length, defined as the width of the V-groove bottom, was as short as 3 nm, and the channel thickness was between 1 and 8 nm. Excellent transistor characteristics with threshold voltages that are optimal for low-power operation were obtained for both n-FETs and p-FETs when the thickness of both the channel and gate dielectric film thickness was reduced to 1 nm. The origin of the excellent electrostatic control is discussed on the basis of fringe capacitance and quantum confinement effects in a nanometer-scale ultrathin Si layer where band-gap expansion, dielectric constant reduction, and increase in the dopant activation energy become prominent. The electrical characteristics of the ultrashort channel JL-FETs were found to be very sensitive to device parameters such as the channel thickness and dopant concentration.

[1]  A. Kranti,et al.  Junctionless nanowire transistor (JNT): Properties and design guidelines , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[2]  O. Rozeau,et al.  28nm FDSOI technology platform for high-speed low-voltage digital applications , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[3]  Chi-Woo Lee,et al.  Junctionless multigate field-effect transistor , 2009 .

[4]  A. Ogura,et al.  Sub-10-nm planar-bulk-CMOS devices using lateral junction control , 2003, IEEE International Electron Devices Meeting 2003.

[5]  G. Lo,et al.  Quantum Size Effects on Dielectric Constants and Optical Absorption of Ultrathin Silicon Films , 2008, IEEE Electron Device Letters.

[6]  Kyoung Hwan Yeo,et al.  Characteristics of sub 5nm tri-gate nanowire MOSFETs with single and poly Si channels in SOI structure , 2006, 2009 Symposium on VLSI Technology.

[7]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[8]  H. Fukutome,et al.  Comprehensive extensibility of 20nm low power/high performance technology platform featuring scalable high-k/metal gate planar transistors with reduced design corner , 2012, 2012 International Electron Devices Meeting.

[9]  Christophe Delerue,et al.  Concept of dielectric constant for nanosized systems , 2003 .

[10]  Abhinav Kranti,et al.  Short-Channel Junctionless Nanowire Transistors , 2010 .

[11]  S. Takagi,et al.  Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors , 2003 .

[12]  Chenming Hu,et al.  5nm-gate nanowire FinFET , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[13]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[14]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[15]  M. Armstrong,et al.  Comparison of Junctionless and Conventional Trigate Transistors With $L_{g}$ Down to 26 nm , 2011, IEEE Electron Device Letters.

[16]  Zhenghong Lu,et al.  Crystalline Si/SiO2 quantum wells , 2002 .

[17]  A. Kumar,et al.  Analysis and prospect of local variability of drain current in scaled MOSFETs by a new decomposition method , 2010, 2010 Symposium on VLSI Technology.

[18]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[19]  Christophe Delerue,et al.  Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement , 2007 .

[20]  G. Bryant Hydrogenic impurity states in quantum-well wires , 1984 .

[21]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[22]  Jean-Pierre Colinge,et al.  Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations , 2008 .

[23]  D.S.H. Chan,et al.  Performance breakthrough in 8 nm gate length Gate-All-Around nanowire transistors using metallic nanowire contacts , 2008, 2008 Symposium on VLSI Technology.

[24]  S. Kal,et al.  Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon , 2006, Microelectron. J..

[25]  T. Nagumo,et al.  Strain engineered extremely thin SOI (ETSOI) for high-performance CMOS , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[26]  Mitsuhiro Shikida,et al.  Study of corner compensating structures and fabrication of various shapes of MEMS structures in pure and surfactant added TMAH , 2009 .

[27]  H. Mizuno,et al.  A hp22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[28]  Y. Morita,et al.  Impact of atomic-scale structural design on ultra-short channel (3 nm) MOSFETs , 2013, 2013 IEEE 5th International Nanoelectronics Conference (INEC).

[29]  Mitsuhiro Shikida,et al.  A model explaining mask-corner undercut phenomena in anisotropic silicon etching: a saddle point in the etching-rate diagram , 2002 .

[30]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[31]  A 10 nm MOSFET concept , 2001 .

[32]  Y. Nara,et al.  Impact of additional factors in threshold voltage variability of metal/high-k gate stacks and its reduction by controlling crystalline structure and grain size in the metal gates , 2008, 2008 IEEE International Electron Devices Meeting.

[33]  K. Endo,et al.  Decomposition of On-Current Variability of nMOS FinFETs for Prediction Beyond 20 nm , 2012, IEEE Transactions on Electron Devices.

[34]  M. Masahara,et al.  Electrical performances of junctionless-FETs at the scaling limit (LCH = 3 nm) , 2012, 2012 International Electron Devices Meeting.

[35]  S. Suk,et al.  Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate , 2006, 2009 Symposium on VLSI Technology.

[36]  Meishoku Masahara,et al.  Fabrication and Demonstration of 3-nm-Channel-Length Junctionless Field-Effect Transistors on Silicon-on-Insulator Substrates Using Anisotropic Wet Etching and Lateral Diffusion of Dopants (Special Issue : Solid State Devices and Materials) , 2013 .

[37]  B. K. Agrawal,et al.  First-principles study of one-dimensional quantum-confined H-passivated ultrathin Si films , 2000 .

[38]  Andrew R. Brown,et al.  Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , 2003 .

[39]  Hiromi Yamauchi,et al.  Variability Analysis of TiN Metal-Gate FinFETs , 2010, IEEE Electron Device Letters.

[40]  Gerard Ghibaudo,et al.  Impact of source-to-drain tunnelling on the scalability of arbitrary oriented alternative channel material nMOSFETs , 2008 .

[41]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[42]  Experimental Study of Silicon Monolayers for Future Extremely Thin Silicon-on-Insulator Devices: Phonon/Band Structures Modulation Due to Quantum Confinement Effects , 2012 .

[43]  Variability of short channel junctionless field-effect transistors caused by fluctuation of dopant concentration , 2013, 2013 14th International Conference on Ultimate Integration on Silicon (ULIS).

[44]  M. D. Giles,et al.  Process Technology Variation , 2011, IEEE Transactions on Electron Devices.

[45]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[46]  Jean-Pierre Colinge,et al.  Simulation of junctionless Si nanowire transistors with 3 nm gate length , 2010 .

[47]  K. Natori,et al.  Dielectric properties of hydrogen-terminated Si(111) ultrathin films , 2006 .

[48]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .