Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor

A hierarchical NiCo2O4@NiO core–shell nanowire hetero-nanostructure has been successfully anchored on a carbon cloth conductive substrate by the stepwise design to fabricate the NiCo2O4@NiO/CC composite for a high-performance flexible all-solid-state electrochemical capacitor. The assembled capacitor exhibits improved pseudocapacitive performance because of the synergetic effect of each component. Impressively, based on the total mass of active material on both electrodes, a high gravimetric capacitance of 1792 F g−1 at 5 mA cm−2 is achieved for the final NiCo2O4@NiO/CC flexible capacitor, along with excellent rate capability and cycle performance (with the capacity retention of 87.5% after 5000 cycling). The outstanding electrochemical performances are attributed to its superstructure with significantly enhanced active-surface area, favorable morphological stability and convenient ion transport paths. These results clearly present a cost-effective and alterable method for fabrication of various core–shell nanostructures on flexible conductive substrates, which may bring new design opportunities of device configuration for energy-storage applications in future wearable electronics.

[1]  Xiaodong Li,et al.  Towards Textile Energy Storage from Cotton T‐Shirts , 2012, Advanced materials.

[2]  Hu-lin Li,et al.  Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films , 2007 .

[3]  S. Ogale,et al.  Nearly Monodispersed Multifunctional NiCo2O4 Spinel Nanoparticles : Magnetism, Infrared Transparency, and Radiofrequency Absorption , 2008 .

[4]  Heejoon Ahn,et al.  Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications , 2011 .

[5]  Xiaogang Zhang,et al.  Uniform urchin-like nickel cobaltite microspherical superstructures constructed by one-dimension nanowires and their application for electrochemical capacitors , 2012 .

[6]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[7]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[8]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[9]  T. Wen,et al.  Electrochemical and spectroelectrochemical monitoring of supercapacitance and electrochromic properties of hydrous ruthenium oxide embedded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) composite , 2006 .

[10]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[11]  Jun Zhang,et al.  Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition , 2008 .

[12]  Vinay Gupta,et al.  Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor , 2010 .

[13]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[14]  D. Mitlin,et al.  Supercapacitive Properties of Hydrothermally Synthesized Co3O4 Nanostructures , 2011 .

[15]  Bin Dong,et al.  Preparation and characterization of ruthenium-doped polypyrrole composites for supercapacitor , 2004 .

[16]  D. Y. Kim,et al.  Supercapacitive properties of polyaniline/Nafion/hydrous RuO2 composite electrodes , 2007 .

[17]  S. Ramaprabhu,et al.  Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications , 2012 .

[18]  John P. Ferraris,et al.  Vanadium Oxide Nanowire–Carbon Nanotube Binder‐Free Flexible Electrodes for Supercapacitors , 2011 .

[19]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[20]  S. Trasatti Electrodes of Conductive Metallic Oxides , 1981 .

[21]  Jiaoyang Li,et al.  Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors , 2012 .

[22]  L. Kong,et al.  A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. , 2012, ACS applied materials & interfaces.

[23]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[24]  Xiaogang Zhang,et al.  Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors , 2012 .

[25]  Guangwu Yang,et al.  Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. , 2008, Chemical communications.

[26]  Zhong Lin Wang,et al.  Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. , 2012, Nano letters.

[27]  Huanlei Wang,et al.  Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. , 2011, Small.

[28]  X. Lou,et al.  Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors , 2012 .

[29]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[30]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[31]  Bin Liu,et al.  NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors , 2013 .

[32]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[33]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[34]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[35]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[36]  Jingshan Luo,et al.  Porous Hydroxide Nanosheets on Preformed Nanowires by Electrodeposition: Branched Nanoarrays for Electrochemical Energy Storage , 2012 .

[37]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[38]  A. Tseung,et al.  The effect of firing temperature, preparation technique and composition on the electrical properties of the nickel cobalt oxide series NixCo1 − xOy , 2004 .

[39]  Yong‐Sheng Hu,et al.  Lithium storage performance in ordered mesoporous MoS2 electrode material , 2012 .

[40]  Hongcai Gao,et al.  High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. , 2012, ACS applied materials & interfaces.

[41]  Zhiyi Lu,et al.  Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area , 2012, Nano Research.

[42]  Chunzhong Li,et al.  Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. , 2012, Chemical communications.

[43]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[44]  Bin Wang,et al.  Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor , 2011 .

[45]  Jong‐In Hong,et al.  Conducting Polymer with Metal Oxide for Electrochemical Capacitor: Poly(3,4-ethylenedioxythiophene) RuO x Electrode , 2001 .

[46]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.