Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion

Abstract Thermal effects substantially impact the cavitation dynamics of cryogenic fluids. The present article reviews recent progress made toward developing modeling and computational strategies to simulate cryogenic cavitation relevant to liquid rocket propulsion applications. We re-examine previously developed cavitation models, including thermal effect and turbulence closures. The experimentally observed “frosty” appearance within the cavity is modeled as a mushy phase boundary. The impact of model parameters and material properties on the prediction is probed by global sensitivity techniques. Performance of the reported cavitation models is compared against the existing cavitation models and experimental data, under both non-cryogenic and cryogenic conditions. Time-dependent computations for various cases of cryogenic cavitation are further reviewed. Impact of the cryogenic environment and inflow perturbations on the flow structure and instabilities is explained via the simulated flow fields and the reduced order strategy of proper orthogonal decomposition (POD).

[1]  Wei Shyy,et al.  Time‐dependent turbulent cavitating flow computations with interfacial transport and filter‐based models , 2005 .

[2]  A. K. Singhal,et al.  Mathematical Basis and Validation of the Full Cavitation Model , 2002 .

[3]  W. Shyy,et al.  Three-Dimensional Simulation of Turbulent Cavitating Flows in a Hollow-Jet Valve , 2003 .

[4]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[5]  C. Merkle,et al.  Computation of Multiphase Mixture Flows with Compressibility Effects , 2002 .

[6]  Luca d'Agostino,et al.  A BAROTROPIC CAVITATION MODEL WITH THERMODYNAMIC EFFECTS , 2003 .

[7]  P. B. Butler,et al.  Numerical Study of Cavitation in the Wake of a Hypervelocity Underwater Projectile , 1999 .

[8]  Robert F. Kunz,et al.  UNSTEADY RANS AND DETACHED EDDY SIMULATIONS OF CAVITATING FLOW OVER A HYDROFOIL , 2003 .

[9]  Vineet Ahuja,et al.  A GENERALIZED MULTI-PHASE FRAMEWORK FOR MODELING CAVITATION IN CRYOGENIC FLUIDS , 2003 .

[10]  C. Merkle,et al.  Cavity Flow Predictions Based on the Euler Equations , 1994 .

[11]  Wei Shyy,et al.  Controlled variation scheme in a sequential solver for recirculating flows, part I: Theory and formulation , 1994 .

[12]  Wei Shyy,et al.  Filter-based unsteady RANS computations for single-phase and cavitating flows , 2004 .

[13]  Wei Shyy,et al.  Computations of Unsteady Cavitation With a Pressure-Based Method , 2003 .

[14]  A. Coulon,et al.  An experimental investigation of thermal effects in a cavitating inducer , 2003 .

[15]  J. Reboud,et al.  Experiments on unsteady cavitation , 1997 .

[16]  W. Shyy,et al.  Dynamics of attached turbulent cavitating flows , 2001 .

[17]  Y. Ventikos,et al.  A numerical method for the simulation of steady and unsteady cavitating flows , 2000 .

[18]  J. Reboud,et al.  Measurements within unsteady cavitation , 2000 .

[19]  W. Shyy,et al.  Impact of Turbulence and Compressibility Modeling on Three-Dimensional Cavitating Flow Computations , 2003 .

[20]  Toshiaki Ikohagi,et al.  Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil , 2003 .

[21]  Wei Shyy,et al.  Computational Modeling of Thermodynamic Effects in Cryogenic Cavitation , 2005 .

[22]  R. S. Ruggeri,et al.  Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds , 1969 .

[23]  K. Kamijo,et al.  A NEW MODELING OF SHEET CAVITATION CONSIDERING THE THERMODYNAMIC EFFECTS , 2003 .

[24]  Joseph Katz,et al.  Flow structure and modeling issues in the closure region of attached cavitation , 2000 .

[25]  Tim Colonius,et al.  Toward Efficient Computation of Heat and Mass Transfer Effects in the Continuum Model for Bubbly Cavitating Flows , 2001 .

[26]  Felipe Bastos de Freitas Rachid,et al.  A thermodynamically consistent model for cavitating flows of compressible fluids , 2003 .

[27]  Vineet Ahuja,et al.  Numerical Study of Cavitation in Cryogenic Fluids , 2005 .

[28]  Wei Shyy,et al.  Evaluations of Cavitation Models for Navier-Stokes Computations , 2002 .

[29]  Wei Shyy,et al.  Proper Orthogonal Decomposition for Time-Dependent Lid-Driven Cavity Flows , 2002 .

[30]  D. R. Stinebring,et al.  A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction , 2000 .

[31]  Yoichiro Matsumoto,et al.  Modeling of the Thermal Behavior Inside a Bubble , 2001 .

[32]  Jean-Luc Reboud,et al.  Estimation of thermal effects in cavitation of thermosensible liquids , 1999 .

[33]  J. Hord,et al.  Cavitation in liquid cryogens. 3: Ogives , 1973 .

[34]  Claude Rebattet,et al.  Visualizations of leading edge cavitation in an Inducer at different temperatures , 2001 .

[35]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[36]  H. Rouse,et al.  Cavitation and pressure distribution: head forms at zero angle of yaw , 1948 .

[37]  S. Heister,et al.  Modeling Hydrodynamic Nonequilibrium in Cavitating Flows , 1996 .

[38]  M. Athavale,et al.  Numerical analysis of cavitating flows in rocket turbopump elements , 2001 .

[39]  Wei Shyy,et al.  Filter-based unsteady RANS computations , 2004 .

[40]  J. Hord,et al.  Cavitation in liquid cryogens. 2: Hydrofoil , 1973 .

[41]  Wei Shyy,et al.  Computational Techniques for Complex Transport Phenomena , 1997 .

[42]  Wei Shyy,et al.  Interfacial dynamics‐based modelling of turbulent cavitating flows, Part‐1: Model development and steady‐state computations , 2004 .

[43]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[44]  Kenjiro Kamijo,et al.  A Numerical Study of Thermodynamic Effects of Sheet Cavitation , 2002 .

[45]  Vineet Ahuja,et al.  Simulations of cavitating flows using hybrid unstructured meshes , 2001 .

[46]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[47]  Vineet Ahuja,et al.  Generalized Numerical Framework for Cavitation in Inducers , 2003 .

[48]  Yongsheng Lian,et al.  Proper Orthogonal Decomposition for Three-Dimensional Membrane Wing Aerodynamics , 2003 .

[49]  Wei Shyy,et al.  Reduced-order description of fluid flow with moving boundaries by proper orthogonal decomposition , 2005 .

[50]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[51]  W. Shyy,et al.  Interfacial dynamics‐based modelling of turbulent cavitating flows, Part‐2: Time‐dependent computations , 2004 .

[52]  D. K. Edmonds,et al.  Cavitation in Liquid Cryogens , 1969 .

[53]  W. Shyy,et al.  A Pressure-Based Method for Turbulent Cavitating Flow Computations , 2001 .

[54]  Meng-Sing Liou,et al.  Low-Diffusion Flux-Splitting Methods for Real Fluid Flows with Phase Transitions , 2000 .

[55]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[56]  Christopher E. Brennen,et al.  Hydrodynamics of Pumps , 1995 .

[57]  M. McLinden,et al.  NIST Standard Reference Database 23 - NIST Thermodynamic and Transport Properties REFPROP, Version 7.0 , 2002 .

[58]  D. R. Stinebring,et al.  High Reynolds Number, Unsteady, Multiphase CFD Modeling of Cavitating Flows , 2002 .

[59]  C. Merkle,et al.  Numerical Modeling of the Thermodynamic Effects of Cavitation , 1997 .

[60]  Allan J. Acosta,et al.  Note on Observations of Cavitation in Different Fluids , 1961 .