ROBUST H∞VIBRATION CONTROL FOR FLEXIBLE LINKAGE MECHANISM SYSTEMS WITH PIEZOELECTRIC SENSORS AND ACTUATORS

It is well known that the unmodelled dynamics may deteriorate the efficiency of a controller if the controller is not robust enough. This paper presents a robust H∞vibration control method for high-speed flexible linkage mechanism systems with piezoelectric actuators and sensors. The robust H∞controller is designed based on the complex mode and the H∞control theory. The numerical simulation shows that the vibration can be significantly suppressed with permitted actuator voltages by the controller. The robustH∞ controller can avoid the spillover due to mode truncation to compare with some other method.

[1]  B. S. Thompson,et al.  The Elastodynamic Response of a Class of Intelligent Machinery, Part II: Computational and Experimental Results , 1989 .

[2]  E. H El-Dannanh,et al.  Vibratory response of a sandwich link in a high speed mechanism , 1993 .

[3]  Frank Bauer,et al.  Classical and robust H(infinity) control redesign for the Hubble Space Telescope , 1992 .

[4]  Jiann-Shiou Yang H°° Robust Control Design for Linear Feedback Systems , 1993 .

[5]  M. Sannah,et al.  Active Control of Elastodynamic Vibrations of a Four-Bar Mechanism System With a Smart Coupler Link Using Optimal Multivariable Control: Experimental Implementation , 1998 .

[6]  Brian S. Thompson,et al.  The design of robots and intelligent manipulators using modern composite materials , 1985 .

[7]  Y. C. Chen,et al.  Vibration Control of the Elastodynamic Response of High-Speed Flexible Linkage Mechanisms , 1991 .

[8]  Faramarz Gordaninejad,et al.  Dynamic analysis of a composite-material flexible robot arm , 1993 .

[9]  C. Y. Liao,et al.  An Elastodynamic Analysis and Control of Flexible Linkages Using Piezoceramic Sensors and Actuators , 1993 .

[10]  Zhang Xianmin,et al.  Complex Mode Active Vibration Control of High-Speed Flexible Linkage Mechanisms , 2000 .

[11]  B. Thompson,et al.  A note on the experimentally determined elastodynamic response of a Slider-Crank mechanism featuring a macroscopically smart connecting rod with ceramic piezoelectric actuators and strain Gauge sensors , 1995 .

[12]  Ya-Peng Shen,et al.  Optimal control of active structures with piezoelectric modal sensors and actuators , 1997 .

[13]  K. Soong,et al.  The Elastodynamic Response of a Class of Intelligent Machinery, Part I: Theory , 1989 .

[14]  K. Y. Lam,et al.  Active Vibration Control of Composite Beams with Piezoelectrics: a Finite Element Model with Third Order Theory , 1998 .

[15]  Zhang Xianmin,et al.  Optimal design of flexible mechanisms with frequency constraints , 1995 .

[16]  K. Y. Lam,et al.  Active control of composite plates with integrated piezoelectric sensors and actuators under various dynamic loading conditions , 1999 .

[17]  Faryar Jabbari,et al.  H∞ Control for Seismic-Excited Buildings with Acceleration Feedback , 1995 .

[18]  Cemil Bagci,et al.  Fatique design of machine elements using the “Bagci line” defining the fatigue failure surface line (mean stress diagram) , 1981 .

[19]  Brian S. Thompson,et al.  The synthesis of flexible linkages by balancing the tracer point quasi-static deflections using microprocessor and advanced materials technologies , 1985 .

[20]  Brian S. Thompson,et al.  Material selection: An important parameter in the design of high-speed linkages , 1984 .

[21]  Seung-Bok Choi,et al.  Vibration control of flexible linkage mechanisms using piezoelectric films , 1994 .