Sequential Decision Models for Expert System Optimization

Sequential decision models are an important element of expert system optimization when the cost or time to collect inputs is significant and inputs are not known until the system operates. Many expert systems in business, engineering, and medicine have benefited from sequential decision technology. In this survey, we unify the disparate literature on sequential decision models to improve comprehensibility and accessibility. We separate formulation of sequential decision models from solution techniques. For model formulation, we classify sequential decision models by objective (cost minimization versus value maximization) knowledge source (rules, data, belief network, etc.), and optimized form (decision tree, path, input order). A wide variety of sequential decision models are discussed in this taxonomy. For solution techniques, we demonstrate how search methods and heuristics are influenced by economic objective, knowledge source, and optimized form. We discuss open research problems to stimulate additional research and development.

[1]  Vijay S. Mookerjee,et al.  Redesigning Case Retrieval to Reduce Information Acquisition Costs , 1997, Inf. Syst. Res..

[2]  Jie Cheng,et al.  Applying machine learning to semiconductor manufacturing , 1993, IEEE Expert.

[3]  David Heckerman,et al.  Decision-Theoretic Troubleshooting: A Framework for Repair and Experiment , 1996, UAI.

[4]  D. Heckerman,et al.  Toward Normative Expert Systems: Part I The Pathfinder Project , 1992, Methods of Information in Medicine.

[5]  J. Ross Quinlan,et al.  Simplifying decision trees , 1987, Int. J. Hum. Comput. Stud..

[6]  Vijay S. Mookerjee,et al.  Improving the Performance Stability of Inductive Expert Systems Under Input Noise , 1995, Inf. Syst. Res..

[7]  Lewis T. Reinwald,et al.  Conversion of Limited-Entry Decision Tables to Optimal Computer Programs I: Minimum Average Processing Time , 1966, JACM.

[8]  Ting-Peng Liang,et al.  A composite approach to inducing knowledge for expert systems design , 1992 .

[9]  Andrew B. Whinston,et al.  Information Issues in Model Specification , 1991, Inf. Syst. Res..

[10]  M. Verhelst,et al.  The conversion of limited-entry decision tables to optimal and near-optimal flowcharts: two new algorithms , 1972, CACM.

[11]  Krishna R. Pattipati,et al.  Application of heuristic search and information theory to sequential fault diagnosis , 1990, IEEE Trans. Syst. Man Cybern..

[12]  Solomon L. Pollack,et al.  Decision Tables Theory and Practice , 1971 .

[13]  David Heckerman,et al.  Decision-theoretic case-based reasoning , 1994, IEEE Trans. Syst. Man Cybern. Part A.

[14]  Herbert Schorr,et al.  Innovative applications of artificial intelligence , 1989 .

[15]  Vijay S. Mookerjee,et al.  Optimizing Expert Systems: Heuristics for Efficiently Generating Low-Cost Information Acquisition Strategies , 1999, INFORMS J. Comput..

[16]  H. Joseph Myers Compiling Optimized Code from Decision Tables , 1972, IBM J. Res. Dev..

[17]  Andrew B. Whinston,et al.  A model of decision-making with sequential information-acquisition (part 2) , 1987, Decis. Support Syst..

[18]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[19]  Vijay S. Mookerjee,et al.  Inductive Expert System Design: Maximizing System Value , 1993, Inf. Syst. Res..

[20]  R. A. Johnson,et al.  An Information Theory Approach to Diagnosis , 1960 .

[21]  Roger G. Johnson,et al.  Some comments on the use of ambiguous decision tables and their conversion to computer programs , 1973, CACM.

[22]  M. Garey Optimal Binary Identification Procedures , 1972 .

[23]  Peter D. Turney Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm , 1994, J. Artif. Intell. Res..

[24]  C McCallumJohn Maintenance of expert systems , 1985 .

[25]  Pramod K. Varshney,et al.  Application of Information Theory to Sequential Fault Diagnosis , 1982, IEEE Transactions on Computers.

[26]  T ReinwaldLewis,et al.  Conversion of Limited-Entry Decision Tables to Optimal Computer Programs I: Minimum Average Processing Time , 1966 .

[27]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[28]  D E Heckerman,et al.  An evaluation of the diagnostic accuracy of Pathfinder. , 1992, Computers and biomedical research, an international journal.

[29]  Jadzia Cendrowska,et al.  PRISM: An Algorithm for Inducing Modular Rules , 1987, Int. J. Man Mach. Stud..

[30]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[31]  Alberto Martelli,et al.  Additive AND/OR Graphs , 1973, IJCAI.

[32]  S. Ganapathy,et al.  Information theory applied to the conversion of decision tables to computer programs , 1973, CACM.

[33]  Varghese S. Jacob,et al.  Artificial Intelligence and the Management Science Practitioner: Rational Choice and Artificial Intelligence , 1988 .

[34]  Kenneth C. Sevcik,et al.  The synthetic approach to decision table conversion , 1976, CACM.

[35]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[36]  George Diehr,et al.  A Refresh Scheme for Remote Snapshots , 1990, Inf. Syst. Res..

[37]  Andrew B. Whinston,et al.  Multi-Agent Resource Allocation: An Incomplete Information Perspective , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[38]  Janet L. Kolodner,et al.  Improving Human Decision Making through Case-Based Decision Aiding , 1991, AI Mag..

[39]  A. Bagchi,et al.  AND/OR graph heuristic search methods , 1985, JACM.

[40]  Gavriel Salvendy,et al.  Handbook of human factors. , 1987 .

[41]  Randall Davis Content Reference: Reasoning about Rules , 1980, Artif. Intell..

[42]  Andrew B. Whinston,et al.  A decision theoretic approach to information retrieval , 1990, TODS.

[43]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[44]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[45]  Bernard M. E. Moret,et al.  Decision Trees and Diagrams , 1982, CSUR.

[46]  Eric Horvitz,et al.  An Approximate Nonmyopic Computation for Value of Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  David Heckerman,et al.  Troubleshooting Under Uncertainty , 1994 .

[48]  Keith Shwayder Extending the infomation theory approach to converting limited-entry decision tables to computer programs , 1974, CACM.

[49]  Virginia E. Barker,et al.  Expert systems for configuration at Digital: XCON and beyond , 1989, Commun. ACM.

[50]  Eric Horvitz,et al.  Display of Information for Time-Critical Decision Making , 1995, UAI.

[51]  Alberto Martelli,et al.  Optimizing decision trees through heuristically guided search , 1978, CACM.