Optical Technology until the Year 2000: An Historical Overview

This chapter reviews advances in the area of optical sensor technology using indicator probes and labels. It also presents an account of optical sensors based on the use of biomolecules and molecular receptors including molecular imprints. One may wonder why such progress has been made in the past 20 years. In the author’s opinion, this is due to several factors. These include the following: (a) New light sources have become available, including light-emitting diodes and diode lasers with their low power consumption and small size, both now spanning the entire visible range (LEDs even available with emission peaks at 370 nm); (b) new photodiodes and CCDs have become available with hitherto unseen sensitivity for visible and near-infrared light; (c) the advent of fiber optics and of integrated waveguide optics with excellent transmission that extends far into the near infrared; (d) wave guides have become available that also transmit mid-infrared and infrared light; (e) fast detectors, oscilloscopes and log-in amplifiers are now available at low cost; these allow sensitive and highly time-resolved measurements; (f) new detection schemes including surface plasmon resonance, evanescent wave sensing have found their way into sensor technology; (g) fluorescence spectroscopies (which are so useful for sensing purposes) have become particularly widespread and include the measurement of fluorescence (or phosphorescence) intensity, decay time, energy transfer, quenching efficiency, polarization, and allow gated measurements that can eliminate interfering background luminescence; (h) new biomolecular receptors (synthetic, made from plastic, or genetically engineered) are available that may be used for sensing purposes; (i) substantial progress has been made in nucleic acid chemistry and protein chemistry, including the immobilization of these biomolecules; (j) progress in polymer chemistry, which is particularly significant since polymer chemistry plays a major role in optical sensor technology; this is particularly true for sensor matrices, biocompatible materials, and new materials including composite polymers (e.g. for molecular imprints), hydrogels, and sol-gels; (k) powerful data processors and data loggers have become available at affordable prices; finally, (l) it is believed that interdisciplinary teaching and interdisciplinary conferences like Europtrode have contributed to an improved understanding and interaction between scientists involved in optical sensor technology.

[1]  J. Peterson,et al.  Fiber-optic probe for in vivo measurement of oxygen partial pressure. , 1984, Analytical chemistry.

[2]  Otto S. Wolfbeis,et al.  LED-compatible fluorosensor for measurement of near-neutral pH values , 1992 .

[3]  J. Peterson,et al.  New technique of surface flow visualization based on oxygen quenching of fluorescence , 1980 .

[4]  R. Koncki,et al.  Composite Films of Prussian Blue and N-Substituted Polypyrroles:  Fabrication and Application to Optical Determination of pH. , 1998, Analytical chemistry.

[5]  L. Bachas,et al.  Fiber-optic biosensor with fluorescence detection based on immobilized alkaline phosphatase , 1992 .

[6]  Otto S. Wolfbeis,et al.  New luminescent metal complex for pH transduction in optical fiber sensing: application to a CO2-sensitive device , 1991, Other Conferences.

[7]  K. Ueno,et al.  Complexation and extraction of alkali metal ions by 4'-picrylaminobenzo-18-crown-6 derivatives , 1980 .

[8]  I Klimant,et al.  Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. , 2000, Biosensors & bioelectronics.

[9]  O. Wolfbeis,et al.  Fluorescence sensor for monitoring ionic strength and physiological pH values , 1986 .

[10]  O. Wolfbeis,et al.  Fluorescence quenching method for determination of two or three components in solution , 1983 .

[11]  Michael A. Butler,et al.  Optical fiber hydrogen sensor , 1984 .

[12]  O. Wolfbeis,et al.  Novel optical sensor materials based on solubilization of polar dyes in apolar polymers , 1997 .

[13]  K. Seiler,et al.  Carriers for chemical sensors: Design features of optical sensors (optodes) based on selective chromoionophores , 1989 .

[14]  R. A. Lieberman,et al.  Intrinsic Fiber Optic Chemical Sensor Based On Two-Stage Fluorescence Coupling , 1989, Other Conferences.

[15]  L. Bachas,et al.  Fiber optic sensor for NOX , 1992 .

[16]  W. Seitz,et al.  Luminescence ratio indicators for oxygen , 1987 .

[17]  Jie Lin,et al.  Recent development and applications of optical and fiber-optic pH sensors , 2000 .

[18]  W. Rudolf Seitz,et al.  Single fiber absorption measurements for remote detection of 2,4,6-trinitrotoluene , 1989 .

[19]  I. Bergman,et al.  Rapid-response Atmospheric Oxygen Monitor based on Fluorescence Quenching , 1968, Nature.

[20]  W. W. Miller,et al.  Performance of an in-vivo, continuous blood-gas monitor with disposable probe. , 1987, Clinical chemistry.

[21]  Brendan C. O'Kelly,et al.  Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass , 1991 .

[22]  J. Peterson,et al.  Fiber-optic sensors for biomedical applications. , 1984, Science.

[23]  A Zipp,et al.  Solid-phase chemistry: Its principles and applications in clinical analysis. , 1984, Talanta.

[24]  Otto S. Wolfbeis,et al.  Fiber-optic remote detection of pesticides and related inhibitors of the enzyme acetylcholine esterase☆ , 1993 .

[25]  Otto S. Wolfbeis,et al.  Chemical Sensing Using Indicator Dyes , 1997 .

[26]  B E Statland,et al.  Colorimetric determination of potassium in plasma and serum by reflectance photometry with a dry-chemistry reagent. , 1992, Clinical chemistry.

[27]  Otto S. Wolfbeis,et al.  Fiberoptic Oxygen Sensor Based on Fluorescence Quenching and Energy Transfer , 1988 .

[28]  C. Pitt,et al.  Oxygen detection using phosphorescent Langmuir-Blodgett films of a metalloporphyrin , 1988 .

[29]  L. Fabbrizzi,et al.  Sensors and switches from supramolecular chemistry , 1995 .

[30]  Ingo Klimant,et al.  Strategies To Design pH Optodes with Luminescence Decay Times in the Microsecond Time Regime , 1998 .

[31]  N. Opitz,et al.  New fluorescence photometrical techniques for simultaneous and continuous measurements of ionic strength and hydrogen ion activities , 1983 .

[32]  T. Meyer,et al.  Fiber-optic nitric oxide-selective biosensors and nanosensors. , 1998, Analytical chemistry.

[33]  Andrew Mills,et al.  Equilibrium studies on colorimetric plastic film sensors for carbon dioxide , 1992 .

[34]  Kenneth T. V. Grattan,et al.  Dual wavelength optical fibre sensor for ph measurement , 1987 .

[35]  P. S. Bechthold,et al.  Enhanced raman scattering from small metallic particles and Metallic Films , 1983 .

[36]  N. Opitz,et al.  Opticl fluorescence sensors for continuous measurement of chemical concentrations in biological systems , 1983 .

[37]  R Y Tsien,et al.  New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. , 1980, Biochemistry.

[38]  R. E. Moss,et al.  Communication. An optical potassium ion sensor , 1987 .

[39]  W. Rudolf Seitz,et al.  pH sensor based on immobilized fluoresceinamine , 1982 .

[40]  Christian Huber,et al.  Dual Lifetime Referencing (DLR) — a New Scheme for Converting Fluorescence Intensity into a Frequency-Domain or Time-Domain Information , 2001 .

[41]  Gordon F. Kirkbright,et al.  Studies with immobilised chemical reagents using a flow-cell for the development of chemically sensitive fibre-optic devices , 1984 .

[42]  Otto S. Wolfbeis,et al.  New Optical Chemical Sensors Based On The Langmuir-Blodgett Technique , 1989, Other Conferences.

[43]  Max E. Lippitsch,et al.  Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier , 1988 .

[44]  O. Wolfbeis,et al.  New polar plasticizers for luminescence-based sensors , 1997 .

[45]  H. Marsoner,et al.  A fluorescence-based sterilizable oxygen probe for use in bioreactors☆ , 1983 .

[46]  F. Steemers,et al.  Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays , 2000, Nature Biotechnology.

[47]  Paul Hartmann,et al.  Oxygen flux fluorescence lifetime imaging , 1997 .

[48]  Ingo Klimant,et al.  Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer , 1999 .

[49]  O. Wolfbeis,et al.  Overcoming the pH dependency of optical sensors: a pH-independent chloride sensor based on co-extraction , 1999 .

[50]  Otto S. Wolfbeis,et al.  Optical sensing of pH based on polypyrrole films , 1996 .

[51]  Stanley M. Klainer,et al.  Feasibility of using fiber optics for monitoring groundwater contaminants. II. Organic chloride optrode , 1983 .

[52]  W. Seitz,et al.  Amylase substrate based on fluorescence energy transfer , 1990 .

[53]  I. Leray,et al.  Design principles of fluorescent molecular sensors for cation recognition , 2000 .

[54]  N. Opitz,et al.  Notizen: Nanoencapsulated Fluorescence Indicator Molecules Measuring pH and pO2 Down to Submicroscopical Regions on the Basis of the Optode-Principle , 1977 .

[55]  Z. Zhujun,et al.  Optical sensor for sodium based on ion-pair extraction and fluorescence , 1986 .

[56]  Frank Kvasnik,et al.  Distributed Chemical Sensing Utilising Evanescent Wave Interactions , 1990, Other Conferences.

[57]  Marc J.P. Leiner Optical sensors for in vitro blood gas analysis , 1995 .

[58]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[59]  David R. Walt,et al.  A fiber-optic sensor for CO2 measurement , 1988 .

[60]  D. W. Lübbers,et al.  Die pCO2-/pO2-Optode: Eine neue p CO2- bzw. pO2-Meßsonde zur Messung des pCO2 oder pO2 von Gasen und Flüssigkeiten / The pCO2-/pO2-Optode: A New Probe for Measurement of pCO2 or pO2 in Fluids and Gases , 1975 .

[61]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[62]  Aleksandra Lobnik,et al.  pH optical sensors based on sol–gels: Chemical doping versus covalent immobilization , 1998 .

[63]  Olof Ramström,et al.  Peer Reviewed: Molecular Imprinting: New Possibilities for Sensor Technology , 1997 .

[64]  N. Opitz,et al.  Quantitative fluorescence photometry with biological fluids and gases. , 1976, Advances in experimental medicine and biology.

[65]  H. Kautsky Energie‐Umwandlungen an Grenzflächen, IV. Mitteil.: H. Kautsky und A. Hirsch: Wechselwirkung zwischen angeregten Farbstoff‐Molekülen und Sauerstoff , 1931 .

[66]  G. Harper Reusable glass-bound pH indicators , 1975 .

[67]  H Szmacinski,et al.  Fluorescence lifetime imaging of calcium using Quin-2. , 1992, Cell calcium.

[68]  S R Goldstein,et al.  Fiber optic pH probe for physiological use. , 1980, Analytical chemistry.

[69]  J. Callis,et al.  Surface pressure field mapping using luminescent coatings , 1993 .

[70]  Manfred Pollack,et al.  A Method for Determining Small Quantities of Oxygen , 1944 .

[71]  K. Seiler,et al.  Theoretical aspects of bulk optode membranes , 1992 .

[72]  R. R. Smardzewski Multi-element optical waveguide sensor: General concept and design. , 1988, Talanta.

[73]  Ichiro Okura,et al.  Optical Oxygen Sensing Material: Terbium(III) Complex Adsorbed Thin Film , 2001 .

[74]  Christian Huber,et al.  Fiber Optic Ion-Microsensors Based on Luminescence Lifetime , 1999 .

[75]  C. Lowe,et al.  Solid-phase optoelectronic sensors for biochemical analysis. , 1984, Analytical biochemistry.

[76]  W. Rudolf Seitz,et al.  AN OXYGEN PROBE BASED ON TETRAKIS ALKYL AMINOETHYLENE CHEMILUMINESCENCE1 , 1981 .

[77]  Otto S. Wolfbeis,et al.  Fiber-optic fluorosensor for oxygen and carbon dioxide , 1988 .

[78]  Ramaier Narayanaswamy,et al.  Optical fibre sensors for chemical species , 1988 .

[79]  Otto S. Wolfbeis,et al.  Capillary waveguide sensors , 1996 .

[80]  W. Rudolf Seitz,et al.  A fluorescent sensor for aluminum(III), magnesium(II), zinc(II) and cadmium(II) based on electrostatically immobilized quinolin-8-ol sulfonate , 1985 .

[81]  Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors , 1996 .

[82]  M. Meyerhoff,et al.  Anion selective optical sensing with metalloporphyrin-doped polymeric films , 1993 .

[83]  Otto S. Wolfbeis,et al.  Optical sensor for the pH 10–13 range using a new support material , 1993 .

[84]  J. Vanderkooi,et al.  An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. , 1987, The Journal of biological chemistry.

[85]  Otto S. Wolfbeis,et al.  A fully reversible fiber optic lactate biosensor based on the intrinsic fluorescence of lactate monooxygenase , 1989 .

[86]  Leonard George Cohen,et al.  Optical fiber chemical sensors utilizing dye‐doped silicone polymer claddings , 1989 .

[87]  B. Young,et al.  pH Measurement with a fiber-optic tissue-pH monitor and a standard blood-pH meter. , 1983, Clinical chemistry.

[88]  Otto S. Wolfbeis,et al.  A new sensing material for optical oxygen measurement, with the indicator embedded in an aqueous phase , 1986 .

[89]  A Zipp,et al.  Solid-phase colorimetric determination of potassium. , 1982, Clinical chemistry.

[90]  Otto S. Wolfbeis,et al.  Fibre-optic fluorescing sensor for ammonia , 1986 .

[91]  Otto S. Wolfbeis,et al.  Enantio-selective optode for the β-blocker propranolol , 1991, Other Conferences.

[92]  N. Opitz,et al.  Continuous measurement of concentrations of alcohol using a fluorescence-photometric enzymatic method , 1980 .

[93]  Mark A. Arnold,et al.  Fiber optic ammonia gas sensing probe , 1986 .

[94]  Mauro Bacci,et al.  Spectrophotometric investigations on immobilized acid-base indicators , 1988 .

[95]  O. Wolfbeis,et al.  A Polyaniline with Near-Infrared Optical Response to Saccharides , 1999 .

[96]  Helmut Offenbacher,et al.  Optical sensor for continuous determination of halides , 1984 .

[97]  Otto S. Wolfbeis,et al.  Optical sensors for determination of heavy metal ions , 1997 .

[98]  Z. Zhujun,et al.  A carbon dioxide sensor based on fluorescence , 1984 .

[99]  O. Wolfbeis,et al.  Emulsion-based fluorosensors for potassium featuring improved stability and signal change. , 1999, Analytical chemistry.

[100]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[101]  Roger L. Himka,et al.  Field-hardened optical waveguide hybrid integrated-circuit multisensor chemical probe and its chemistry , 1997, Other Conferences.

[102]  O. Wolfbeis,et al.  The effect of polymeric supports and methods of immobilization on the performance of an optical copper(II)-sensitive membrane based on the colourimetric reagent Zincon. , 1998, Talanta.

[103]  Ichiro Okura,et al.  Novel Pressure-Sensitive Paint for Cryogenic and Unsteady Wind-Tunnel Testing , 2002 .

[104]  María Marazuela,et al.  Fiber-optic biosensors – an overview , 2002, Analytical and bioanalytical chemistry.

[105]  Frank J. Swenson Development and evaluation of optical sensors for the detection of bacteria , 1993 .

[106]  Bernhard H. Weigl,et al.  Capillary Optical Sensors , 1994 .

[107]  W. Rudolf Seitz,et al.  Immobilized morin as fluorescence sensor for determination of aluminum(III) , 1983 .

[108]  J. Janata Do optical sensors really measure pH , 1987 .

[109]  J. Lakowicz,et al.  Anisotropy-based sensing with reference fluorophores. , 1999, Analytical biochemistry.

[110]  M. Gold,et al.  Organic Molecules Entrapped In A Silica Host For Use As Biosensor Probe Materials , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[111]  J. Callis,et al.  Submillisecond response times of oxygen‐quenched luminescent coatings , 1993 .

[112]  A. W. Czarnik,et al.  Fluorescent chemosensors for ion and molecule recognition , 1993 .

[113]  O. Wolfbeis,et al.  Disposable cuvette test with integrated sensor layer for enzymatic determination of heavy metals , 1996 .

[114]  O. Wolfbeis Fiber-optic probe for kinetic determination of enzyme activities. , 1986, Analytical chemistry.

[115]  H. Kautsky,et al.  Quenching of luminescence by oxygen , 1939 .

[116]  Helmut Offenbacher,et al.  Fluorescence optical sensors for continuous determination of near-neutral pH values , 1986 .

[117]  A. P. Silva,et al.  Arenedicarboximide Building Blocks for Fluorescent Photoinduced Electron Transfer pH Sensors Applicable with Different Media and Communication Wavelengths , 1998 .

[118]  N. Opitz,et al.  Optical Fluorescence and Its Application to an Intravascular Blood Gas Monitoring System , 1986, IEEE Transactions on Biomedical Engineering.

[119]  O. Wolfbeis,et al.  LED-compatible copper(II)-selective optrode membrane based on lipophilized Zincon , 1994 .

[120]  Bernard Valeur,et al.  New trends in fluorescence spectroscopy : applications to chemical and life sciences , 2001 .

[121]  B. Kowalski,et al.  Chemical Sensing in Process Analysis , 1984, Science.

[122]  Otto S. Wolfbeis,et al.  Optical sensors: An ion-selective optrode for potassium , 1987 .

[123]  Christian Huber,et al.  Set of luminescence decay time based chemical sensors for clinical applications , 1998 .

[124]  I Klimant,et al.  Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. , 2001, Analytical chemistry.

[125]  Renata Reisfeld,et al.  Sol-gels and chemical sensors , 1996 .

[126]  A. H. Free,et al.  Simple specific test for urine glucose. , 1957, Clinical chemistry.

[127]  H H. Miller,et al.  Fiber Opt Ic Chemical Sensors For Industrial And Process Control , 1987, Other Conferences.

[128]  Ingo Klimant,et al.  Fast Response Oxygen Micro-Optodes Based on Novel Soluble Ormosil Glasses , 1999 .

[129]  S. Shinkai,et al.  Molecular design of artificial sugar sensing systems , 1996 .

[130]  W. Rumsey,et al.  Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. , 1988, Science.

[131]  C. Neuberg Chemistry of specific, selective, and sensitive reactions: By Fritz Feigl. Translated by Ralph E. Oesper. Academic Press, New York, N. Y. xiv + 740 pp. Price: $13.50 , 1950 .

[132]  B Walter,et al.  Solid-phase reagent strips for detection of therapeutic drugs in serum by substrate-labeled fluorescent immunoassay. , 1983, Analytical chemistry.

[133]  G. Boisde,et al.  Miniature Chemical Optical Fiber Sensors For Ph Measurements , 1987, Other Conferences.

[134]  E. Pringsheim,et al.  Polyaniline-coated microtiter plates for use in longwave optical bioassays , 2000, Fresenius' journal of analytical chemistry.

[135]  I. Gibb Evaluation and assessment of new disposable strip for determination of plasma potassium concentration. , 1987, Journal of clinical pathology.

[136]  O. Wolfbeis,et al.  Luminescence Lifetime Imaging of Oxygen, pH, and Carbon Dioxide Distribution Using Optical Sensors , 2000 .

[137]  Martin Gouterman,et al.  Oxygen Quenching of Luminescence of Pressure Sensitive Paint for Wind Tunnel Research , 1997 .

[138]  O. Wolfbeis,et al.  Fiber optical fluorosensor for determination of halothane and or oxygen , 1985 .

[139]  Isao Karube,et al.  Molecularly imprinted polymers for biosensor applications , 1999 .

[140]  Otto S. Wolfbeis,et al.  Optical sensor for hydrogen peroxide , 1989 .

[141]  O. Wolfbeis,et al.  Optical sensing of pH using thin films of substituted polyanilines , 1997 .

[142]  O. Wolfbeis Fluorescence-based ion sensing using potential-sensitive dyes☆ , 1995 .

[143]  Ingo Klimant,et al.  Oxygen-Sensitive Luminescent Materials Based on Silicone-Soluble Ruthenium Diimine Complexes , 1995 .

[144]  Y. Kawabata,et al.  Fiber-optic sensor for carbon dioxide with a ph indicator dispersed in a poly(ethylene glycol) membrane , 1989 .

[145]  R. Kopelman,et al.  High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye. , 1997, Analytical chemistry.

[146]  James N. Demas,et al.  Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex , 1987 .

[147]  Ingo Klimant,et al.  Optical Fiber Sensor for Biological Oxygen Demand , 1994 .

[148]  I Klimant,et al.  Optical triple sensor for measuring pH, oxygen and carbon dioxide. , 1994, Journal of biotechnology.

[149]  J. Severinghaus,et al.  A fiber optic PCO2 sensor , 2006, Annals of Biomedical Engineering.

[150]  O S Wolfbeis,et al.  Optical sensors. Part 34. Fibre optic glucose biosensor with an oxygen optrode as the transducer. , 1988, The Analyst.

[151]  Ingo Klimant,et al.  Novel oxygen sensor material based on a ruthenium bipyridyl complex encapsulated in zeolite Y: dramatic differences in the efficiency of luminescence quenching by oxygen on going from surface-adsorbed to zeolite-encapsulated fluorophores , 1995 .

[152]  Gerhard J. Mohr,et al.  Optical sensors for a wide pH range based on azo dyes immobilized on a novel support , 1994 .

[153]  Ingo Klimant,et al.  Fiber‐optic oxygen microsensors, a new tool in aquatic biology , 1995 .

[154]  Y. Kawabata,et al.  Fiber-optic potassium ion sensor using alkyl-acridine orange in plasticized poly(vinyl chloride) membrane , 1990 .

[155]  Christian Klein,et al.  Pressure sensitive paint systems for pressure distribution measurements in wind tunnels and turbomachines , 2000 .

[156]  H M FREE,et al.  Triple-test strip for urinary glucose, protein, and pH. , 1960, Clinical chemistry.