Learning rules for Sugeno ANFIS with parametric conjunction operations

Abstract The paper presents a Sugeno Adaptive Neuro-Fuzzy Inference System with parametric conjunction operations architecture, ANFIS-CX. The advantages of using parametric conjunction operations in fuzzy models are discussed, and learning rules for system identification with such operations are proposed. These learning strategies can include steepest descent gradient, differential evolution and least square estimation algorithms for tuning antecedent, conjunction, and consequent parameters, respectively. The results of system identification by parameter tuning of conjunction operations in addition to or instead of parameter tuning of the input membership functions are presented. Simulation results show that parameter training in conjunction operations, composed of four basic t-norms, significantly improves the approximation capability of fuzzy models.

[1]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[2]  Mehrdad Saif,et al.  Application of imputation techniques and Adaptive Neuro-Fuzzy Inference System to predict wind turbine power production , 2017 .

[3]  Kemal Maulana Alhasa,et al.  Modeling of Tropospheric Delays Using ANFIS , 2015 .

[4]  Okyay Kaynak,et al.  Fuzzy Interval TSK Type‐2 Modeling with Parameterized Conjunctors , 2015 .

[5]  Yaduvir Singh,et al.  SOFT COMPUTING TECHNIQUES FOR PROCESS CONTROL APPLICATIONS , 2011 .

[6]  Pandian Vasant,et al.  Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance , 2012 .

[7]  László T. Kóczy,et al.  Function Approximation Performance of Fuzzy Neural Networks , 2010 .

[8]  Alireza Bahadori,et al.  Prediction of CO2–oil molecular diffusion using adaptive neuro-fuzzy inference system and particle swarm optimization technique , 2016 .

[9]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[10]  Sándor Jenei,et al.  How to construct left-continuous triangular norms--state of the art , 2004, Fuzzy Sets Syst..

[11]  Patricia Melin,et al.  Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems , 2017, Appl. Soft Comput..

[12]  Shahaboddin Shamshirband,et al.  Using ANFIS for selection of more relevant parameters to predict dew point temperature , 2016 .

[13]  László T. Kóczy,et al.  Generalization capability of neural networks based on fuzzy operators , 2011 .

[14]  Ildar Z. Batyrshin,et al.  On Generation of Digital Fuzzy Parametric Conjunctions , 2009, Towards Intelligent Engineering and Information Technology.

[15]  Xiaodong Li,et al.  Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm , 2011, Neural Computing and Applications.

[16]  Hesham Arafat Ali,et al.  A risk evaluation approach for authorization decisions in social pervasive applications , 2016, Comput. Electr. Eng..

[17]  Lawrence Neff Stout,et al.  Categorical approaches to non-commutative fuzzy logic , 2010, Fuzzy Sets Syst..

[18]  Srđan Jović,et al.  Evaluation of agriculture and industry effect on economic health by ANFIS approach , 2017 .

[19]  Ildar Batyrshin,et al.  On generation and FPGA implementation of digital fuzzy parametric conjunctions , 2012 .

[20]  Miguel Molina-Solana,et al.  Meta-association rules for mining interesting associations in multiple datasets , 2016, Appl. Soft Comput..

[21]  Prometeo Cortés-Antonio,et al.  An Automatic Functional Coverage for Digital Systems Through a Binary Particle Swarm Optimization Algorithm with a Reinitialization Mechanism , 2017, Journal of Electronic Testing.

[22]  Lixin Tang,et al.  An Improved Differential Evolution Algorithm for Practical Dynamic Scheduling in Steelmaking-Continuous Casting Production , 2014, IEEE Transactions on Evolutionary Computation.

[23]  Wei Li,et al.  Identification of fuzzy neural networks by forward recursive input-output clustering and accurate similarity analysis , 2016, Appl. Soft Comput..

[24]  J. Sobhani,et al.  Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models , 2010 .

[25]  Elsa Rubio,et al.  Parametric Type-2 Fuzzy Logic Systems , 2012 .

[26]  Ildar Z. Batyrshin,et al.  On the monotone sum of basic t-norms in the construction of parametric families of digital conjunctors for fuzzy systems with reconfigurable logic , 2013, Knowl. Based Syst..

[27]  Reecha Sharma,et al.  A new pose invariant face recognition system using PCA and ANFIS , 2015 .

[28]  Okyay Kaynak,et al.  Fuzzy modeling based on generalized conjunction operations , 2002, IEEE Trans. Fuzzy Syst..

[29]  M. Gupta,et al.  Design of fuzzy logic controllers based on generalized T -operators , 1991 .

[30]  John Yen,et al.  Industrial Applications of Fuzzy Logic and Intelligent Systems , 1995 .

[31]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[32]  Oscar Castillo,et al.  Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm , 2017, Soft Comput..

[33]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[34]  Leila Naderloo,et al.  Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS , 2017 .

[35]  Leticia Amador-Angulo,et al.  A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers , 2016, Soft Computing.

[36]  Xianting Li,et al.  Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection , 2017 .

[37]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[38]  Yongbin Han,et al.  Combined ANFIS and numerical methods to simulate ultrasound-assisted extraction of phenolics from chokeberry cultivated in China and analysis of phenolic composition , 2017 .

[39]  Luis A. Villa Vargas,et al.  FPGA Implementation of Fuzzy Mamdani System with Parametric Conjunctions Generated by Monotone Sum of Basic t-Norms , 2011, Polibits.

[40]  Oscar Castillo,et al.  New Methodology to Approximate Type-Reduction Based on a Continuous Root-Finding Karnik Mendel Algorithm , 2017, Algorithms.

[41]  Okyay Kaynak,et al.  Parametric classes of generalized conjunction and disjunction operations for fuzzy modeling , 1999, IEEE Trans. Fuzzy Syst..

[42]  Subhagata Chattopadhyay,et al.  Genetic-neuro-fuzzy system for grading depression , 2018 .

[43]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[44]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[45]  Francisco Herrera,et al.  Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems , 2007, Int. J. Intell. Syst..

[46]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[47]  Ildar Z. Batyrshin,et al.  Hardware Design of Digital Parametric Conjunctors and t-Norms , 2015, Int. J. Fuzzy Syst..

[48]  Samarjit Kar,et al.  Applications of neuro fuzzy systems: A brief review and future outline , 2014, Appl. Soft Comput..

[49]  R. Nelsen An Introduction to Copulas , 1998 .

[50]  Mohammad Rasoul Narimani,et al.  A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm , 2017, Appl. Soft Comput..

[51]  Liyin Shen,et al.  An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance , 2017 .

[52]  Uday K. Chakraborty,et al.  Advances in Differential Evolution , 2010 .

[53]  Josiah L. Munda,et al.  Comparative analysis and assessment of ANFIS-based domestic lighting profile modelling , 2015 .

[54]  Peter J. Fleming,et al.  Robust Control Systems with Genetic Algorithms , 2018 .

[55]  Oscar Castillo,et al.  Short Remark on Fuzzy Sets, Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets and Intuitionistic Fuzzy Sets , 2014, IEEE Conf. on Intelligent Systems.