Uniqueness Results for an ODE Related to a Generalized Ginzburg-Landau Model for Liquid Crystals

We study a singular nonlinear ordinary differential equation on intervals {[}0, R) with R <= +infinity, motivated by the Ginzburg-Landau models in superconductivity and Landau-de Gennes models in liquid crystals. We prove existence and uniqueness of positive solutions under general assumptions on the nonlinearity. Further uniqueness results for sign-changing solutions are obtained for a physically relevant class of nonlinearities. Moreover, we prove a number of fine qualitative properties of the solution that are important for the study of energetic stability.

[1]  Frank Atkinson,et al.  Sur les solutions radiales de l'équation , 1986 .

[2]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[3]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[4]  E. N. Dancer MINIMAX METHODS IN CRITICAL POINT THEORY WITH APPLICATIONS TO DIFFERENTIAL EQUATIONS (CBMS Regional Conference Series in Mathematics 65) , 1987 .

[5]  R. Ignat,et al.  Stability of the Melting Hedgehog in the Landau–de Gennes Theory of Nematic Liquid Crystals , 2014, 1404.1729.

[6]  Haim Brezis,et al.  Remarks on sublinear elliptic equations , 1986 .

[7]  L. Nirenberg,et al.  Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations , 1988 .

[8]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[9]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[10]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[11]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[12]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[13]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[14]  Vardan Akopian,et al.  Sur les solutions radiales de l'équation −Δu = u(1 − ¦u¦2) dans ℝN (N ≥ 3) , 1997 .

[15]  E. Gartland,et al.  INSTABILITY OF RADIAL HEDGEHOG CONFIGURATIONS IN NEMATIC LIQUID CRYSTALS UNDER LANDAU-DE GENNES FREE-ENERGY MODELS , 1999 .

[16]  L. Nirenberg,et al.  Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains , 1990 .

[17]  Charles M. Elliott,et al.  Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Petru Mironescu,et al.  On the Stability of Radial Solutions of the Ginzburg-Landau Equation , 1995 .

[19]  M. Guedda,et al.  Qualitative study of radial solutions of the Ginzburg-Landau system in RN (N ≥ 3) , 2000, Appl. Math. Lett..

[20]  R. Hervé,et al.  Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau , 1994 .

[21]  S. Gustafson Symmetric solutions of the Ginzburg-Landau equation in all dimensions , 1997 .

[22]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[23]  S. Hess,et al.  Alignment tensor versus director: Description of defects in nematic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  X. Lamy Some properties of the nematic radial hedgehog in the Landau–de Gennes theory , 2012, 1212.1072.

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  John M. Ball,et al.  Differentiability properties of symmetric and isotropic functions , 1984 .

[27]  D. Monselesan,et al.  An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .

[28]  M. Aguareles,et al.  Structure and Gevrey asymptotic of solutions representing topological defects to some partial differential equations , 2011 .