Uniqueness Results for an ODE Related to a Generalized Ginzburg-Landau Model for Liquid Crystals
暂无分享,去创建一个
Radu Ignat | Arghir Zarnescu | Luc Nguyen | Valeriy Slastikov | R. Ignat | V. Slastikov | A. Zarnescu | Luc Nguyen
[1] Frank Atkinson,et al. Sur les solutions radiales de l'équation , 1986 .
[2] B. Gidas,et al. Symmetry and related properties via the maximum principle , 1979 .
[3] J. C. Burkill,et al. Ordinary Differential Equations , 1964 .
[4] E. N. Dancer. MINIMAX METHODS IN CRITICAL POINT THEORY WITH APPLICATIONS TO DIFFERENTIAL EQUATIONS (CBMS Regional Conference Series in Mathematics 65) , 1987 .
[5] R. Ignat,et al. Stability of the Melting Hedgehog in the Landau–de Gennes Theory of Nematic Liquid Crystals , 2014, 1404.1729.
[6] Haim Brezis,et al. Remarks on sublinear elliptic equations , 1986 .
[7] L. Nirenberg,et al. Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations , 1988 .
[8] Apala Majumdar,et al. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.
[9] B. Gidas,et al. Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .
[10] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[11] Timothy A. Davis,et al. Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .
[12] James Serrin,et al. A symmetry problem in potential theory , 1971 .
[13] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[14] Vardan Akopian,et al. Sur les solutions radiales de l'équation −Δu = u(1 − ¦u¦2) dans ℝN (N ≥ 3) , 1997 .
[15] E. Gartland,et al. INSTABILITY OF RADIAL HEDGEHOG CONFIGURATIONS IN NEMATIC LIQUID CRYSTALS UNDER LANDAU-DE GENNES FREE-ENERGY MODELS , 1999 .
[16] L. Nirenberg,et al. Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains , 1990 .
[17] Charles M. Elliott,et al. Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[18] Petru Mironescu,et al. On the Stability of Radial Solutions of the Ginzburg-Landau Equation , 1995 .
[19] M. Guedda,et al. Qualitative study of radial solutions of the Ginzburg-Landau system in RN (N ≥ 3) , 2000, Appl. Math. Lett..
[20] R. Hervé,et al. Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau , 1994 .
[21] S. Gustafson. Symmetric solutions of the Ginzburg-Landau equation in all dimensions , 1997 .
[22] P. Rabinowitz. Minimax methods in critical point theory with applications to differential equations , 1986 .
[23] S. Hess,et al. Alignment tensor versus director: Description of defects in nematic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[24] X. Lamy. Some properties of the nematic radial hedgehog in the Landau–de Gennes theory , 2012, 1212.1072.
[25] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[26] John M. Ball,et al. Differentiability properties of symmetric and isotropic functions , 1984 .
[27] D. Monselesan,et al. An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .
[28] M. Aguareles,et al. Structure and Gevrey asymptotic of solutions representing topological defects to some partial differential equations , 2011 .