Intelligent Learning Environments: The Case of Geometry

This book is based on a Nato workshop for researchers concerned with the design of intelligent learning environments for geometry. Geometry cannot bereduced to procedural knowledge and its complexity makes it of interest for the development of intelligent tutoring systems. The central theme of the volume is student modeling, which has three aspects: modeling the knowledge domain, modeling student knowledge, and designing the didactic interaction and learner control. Four main issues runthrough the papers in the book: - Knowledge about geometry is not real-world knowledge and its computer implementation implies a reification of geometry. - The learning of geometry involves conceptualization at a number of different levels, which must be reflected when modeling student knowledge. - The design of the interface and the management of the didactic interaction must cope with multiple representations. - Domains of geometry other than plane geometry are considered. The book is part of the Nato Special Programme on Advanced Educational Technology.

[1]  Erich Christian Wittmann,et al.  Grundfragen des Mathematikunterrichts , 1974 .

[2]  Celia Hoyles,et al.  Learning mathematics and logo , 1992 .

[3]  Pierrick Nicolas Construction et verification de figures geometriques dans le systeme mentoniezh , 1989 .

[4]  Michel Caillot Learning electricity and electronics with advanced educational technology , 1993 .

[5]  Giuliana Dettori,et al.  Cognitive Models and Intelligent Environments for Learning Programming , 1993, NATO ASI Series.

[6]  Beth Southwell Proceedings of the eighth International Conference for the Psychology of Mathematics Education , 1984 .

[7]  Terry Winograd,et al.  Understanding natural language , 1974 .

[8]  D. Gentner,et al.  Flowing waters or teeming crowds: Mental models of electricity , 1982 .

[9]  Florian Cajori Generalizations in Geometry as Seen in the History of Developable Surfaces , 1929 .

[10]  Uri Leron,et al.  Of geometry, turtles, and groups , 1992 .

[11]  Michelene T. H. Chi,et al.  Learning from Examples Via Self-Explanations , 1988, Knowing, Learning, and Instruction.

[12]  Ron Hoz The effects of rigidity on school geometry learning , 1981 .

[13]  Kenneth D. Forbus An interactive laboratory for teaching control system concepts , 1984 .

[14]  Martial Vivet Research in Advanced Educational Technology: Two Methods , 1992 .

[15]  J. Sneed,et al.  The Logical Structure of Mathematical Physics , 1971 .

[16]  Robert D. Tennyson,et al.  Automating instructional design : computer-based development and delivery tools , 1995 .

[17]  Marvin J. Greenberg Euclidean and non-Euclidean geometries : development and history , 1977 .

[18]  Gwendolyn N. Kelly Working with Logo: Do 5th and 6th Graders Develop a Basic Understanding of Angles and Distances?. , 1987 .

[19]  Michal Yerushalmy Guided Inquiry and Technology: A Year Long Study of Children and Teachers Using the Geometric Supposer. ETC Technical Report 88-6. Final Report. , 1987 .

[20]  Anthony E. Kelly,et al.  Studies of Diagnosis and Remediation with High School Algebra Students , 1989, Cogn. Sci..

[21]  Yves Baulac Un micromonde de géométrie : Cabri-géomètre , 1990 .

[22]  A. Szent-Görgyi [Value of science]. , 1970, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[23]  Daniel Isaac Chazan Ways of knowing : high school students' conceptions of mathematical proof , 1992 .

[24]  Giulio Sandini,et al.  Robots and Biological Systems: Towards a New Bionics? , 2012, NATO ASI Series.

[25]  R. W. Lawler Learning environments: now, then, and someday , 1987 .

[26]  C. Hirsch Curriculum and Evaluation Standards for School Mathematics , 1988 .

[27]  Dietrich Blandow,et al.  Technology education in school and industry : emerging didactics for human resource development , 1994 .

[28]  Etienne Wenger,et al.  Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge , 1987 .

[29]  Richard Noss,et al.  Children's Learning of Geometrical Concepts Through Logo. , 1987 .

[30]  Heinz Steinberg,et al.  Routine and Meaning in the Mathematics Classroom. , 1989 .

[31]  Celia Hoyles,et al.  Logo mathematics in the classroom , 1989 .

[32]  Michal Yerushalmy,et al.  Overcoming visual obstacles with the aid of the Supposer , 1990 .

[33]  Eric Harslem,et al.  Designing the STAR User Interface , 1987, ECICS.

[34]  Edward E. Smith,et al.  The Teaching of Thinking , 1985 .

[35]  J. Nanard La Manipulation directe en interface homme-machine , 1990 .

[36]  John R. Anderson,et al.  Abstract Planning and Perceptual Chunks: Elements of Expertise in Geometry , 1990, Cogn. Sci..

[37]  Celia Hoyles Microworlds/Schoolworlds: The Transformation of an Innovation , 1993 .

[38]  Thomas R. Post Teaching mathematics in grades K-8: Research based methods , 1988 .

[39]  Stephen I. Brown,et al.  The Art of Problem Posing , 1983 .

[40]  Marc Eisenstadt,et al.  Tools for creating intelligent computer tutors , 1984 .

[41]  Horst Struve Eine Analyse des begrifflichen Aufbaus der Schulgeometrie als Grundlage einer Didaktik der Geometrie , 1989 .

[42]  G. Pólya,et al.  How to Solve It. A New Aspect of Mathematical Method. , 1945 .

[43]  John R. Anderson,et al.  Cognitive principles in the design of computer tutors , 1984 .

[44]  David H. Jonassen,et al.  Designing Environments for Constructive Learning , 2012, NATO ASI Series.

[45]  J. Schwartz Intellectual Mirrors: A Step in the Direction of Making Schools Knowledge-Making Places , 1989 .

[46]  Ivan E. Sutherland,et al.  Sketchpad a man-machine graphical communication system , 1988, DAC 1988.

[47]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[48]  J. Clement Students’ preconceptions in introductory mechanics , 1982 .

[49]  Richard Lesh,et al.  Dienes revisited: Multiple embodiments in computer environments , 1987 .

[50]  Heinrich Winter,et al.  Entdeckendes Lernen im Mathematikunterricht , 1989 .

[51]  R. J. Beun,et al.  Dialogue and Instruction: Modelling Interaction in Intelligent Tutoring Systems , 1995 .

[52]  James D. Hollan,et al.  Direct Manipulation Interfaces , 1985, Hum. Comput. Interact..

[53]  G. Polya With, or Without, Motivation? , 1949 .

[54]  Albert Stevens,et al.  The Use of a Sophisticated Graphics Interface in Computer- Assisted Instruction , 1983, IEEE Computer Graphics and Applications.

[55]  Douglas H. Clements,et al.  Geometry and spatial reasoning. , 1992 .

[56]  C. Hoyles,et al.  A pedagogy for mathematical microworlds , 1992 .

[57]  Alan M. Lesgold,et al.  Learning Issues for Intelligent Tutoring Systems , 1989 .

[58]  P. Ross TURTLE GEOMETRY The Computer as a Medium for Exploring Mathematics , 1987 .

[59]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[60]  Barbara Y. White,et al.  Intelligent Tutoring Systems Based Upon Qualitative Model Evolutions , 1986, AAAI.

[61]  V. David Hopkin,et al.  Verification and Validation of Complex Systems: Human Factors Issues , 1993 .

[62]  George Polya,et al.  Mathematical discovery : on understanding, learning, and teaching problem solving , 1962 .

[63]  M. McCloskey Naive Theories of Motion. , 1982 .

[64]  John Seely Brown,et al.  An Investigation of Computer Coaching for Informal Learning Activities. , 1978 .

[65]  Richard Lesh Processes, Skills, and Abilities Needed to Use Mathematics in Everyday Situations , 1985 .

[66]  Hans Niels Jahnke Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik - Beweisen als didaktisches Problem. 10 , 1978 .

[67]  Seymour Papert,et al.  Mindstorms: Children, Computers, and Powerful Ideas , 1981 .

[68]  Franck Bellemain Conception, réalisation et expérimentation d'un logiciel d'aide à l'enseignement de la géométrie : Cabri-géomètre , 1992 .

[69]  Daniel Chazan,et al.  How to Use Conjecturing and Microcomputers to Teach Geometry , 1989 .

[70]  Martial Vivet La prise en compte du contexte avec les tuteurs intelligents , 1989 .

[71]  A. diSessa Toward an Epistemology of Physics , 1993 .

[72]  O. K. Moore,et al.  Some Principles for the Design of Clarifying Educational Environments. Preprint 32. , 1969 .

[73]  William J. Clancey,et al.  The Epistemology of a Rule-Based Expert System - A Framework for Explanation , 1981, Artif. Intell..

[74]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[75]  Michael Hacker,et al.  Advanced educational technology in technology education , 1993 .

[76]  Patrick W. Thompson Mathematical microworlds and intelligent computer-assisted instruction , 1986 .

[77]  Ben Shneiderman,et al.  Direct Manipulation: A Step Beyond Programming Languages , 1983, Computer.

[78]  Claude Frasson,et al.  DYNABOARD: User Animated Display of Deductive Proofs in Mathematics , 1989, Int. J. Man Mach. Stud..

[79]  James D. Hollan,et al.  STEAMER: An Interactive Inspectable Simulation-Based Training System , 1984, AI Mag..

[80]  Mikhail V. Matz A process model for high school algebra errors , 1982 .

[81]  S. Dijkstra,et al.  Instructional Models in Computer-Based Learning Environments , 1992 .

[82]  Bernard Parzysz “Knowing” vs “seeing”. problems of the plane representation of space geometry figures , 1988 .

[83]  Alan H. Schoenfeld,et al.  Mathematical Problem Solving , 1985 .

[84]  Merlyn J. Behr,et al.  Number concepts and operations in the middle grades , 1988 .

[85]  Michal Yerushalmy Enhancing Acquisition of Basic Geometrical Concepts with the Use of the Geometric Supposer , 1991 .

[86]  Celia Hoyles,et al.  The Turtle Metaphor as a Tool for Children's Geometry , 1992 .

[87]  Stellan Ohlsson,et al.  Some principles of intelligent tutoring , 1986 .

[88]  John Clement,et al.  Observed Methods for Generating Analogies in Scientific Problem Solving , 1987, Cogn. Sci..

[89]  Celia Hoyles,et al.  Looking back and looking forward , 1992 .

[90]  Colette Laborde,et al.  The Computer as Part of the Learning Environment: The Case of Geometry , 1993 .