Supplemental Information Structural Basis of Assembly Chaperone-Mediated snRNP Formation

Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.

[1]  P. Vekilov,et al.  Entropy and surface engineering in protein crystallization. , 2006, Acta crystallographica. Section D, Biological crystallography.

[2]  R. Lührmann,et al.  Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. , 1999, Human molecular genetics.

[3]  R. Lührmann,et al.  Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. , 2001, RNA.

[4]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[5]  G. Meister,et al.  Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln , 2001, Current Biology.

[6]  C. Will,et al.  The Spliceosome: Design Principles of a Dynamic RNP Machine , 2009, Cell.

[7]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[8]  Henning Urlaub,et al.  GraFix: sample preparation for single-particle electron cryomicroscopy , 2008, Nature Methods.

[9]  R. Glockshuber,et al.  Reconstitution of Pilus Assembly Reveals a Bacterial Outer Membrane Catalyst , 2008, Science.

[10]  G. Blobel,et al.  Small nuclear ribonucleoprotein particle assembly in vivo: Demonstration of a 6S RNA-free core precursor and posttranslational modification , 1985, Cell.

[11]  T. Glisovic,et al.  Structure of a Key Intermediate of the SMN Complex Reveals Gemin2's Crucial Function in snRNP Assembly , 2011, Cell.

[12]  J. Kuriyan,et al.  How a DNA Polymerase Clamp Loader Opens a Sliding Clamp , 2011, Science.

[13]  Jürgen Pleiss,et al.  Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities , 2011, J. Comput. Chem..

[14]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[15]  B. Kastner,et al.  Functional organization of the Sm core in the crystal structure of human U1 snRNP , 2010, The EMBO journal.

[16]  J. Yong,et al.  Essential Role for the SMN Complex in the Specificity of snRNP Assembly , 2002, Science.

[17]  Jaime Prilusky,et al.  A server and database for dipole moments of proteins , 2007, Environmental health perspectives.

[18]  R. Lührmann,et al.  The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. , 1996, The EMBO journal.

[19]  J. Steitz,et al.  Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. , 1997, Trends in biochemical sciences.

[20]  R. Konrat,et al.  ICln159 Folds into a Pleckstrin Homology Domain-like Structure , 2005, Journal of Biological Chemistry.

[21]  D. Fessas,et al.  Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins , 2011, Nature Structural &Molecular Biology.

[22]  Itay Mayrose,et al.  ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures , 2005, Nucleic Acids Res..

[23]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[24]  Juri Rappsilber,et al.  The Methylosome, a 20S Complex Containing JBP1 and pICln, Produces Dimethylarginine-Modified Sm Proteins , 2001, Molecular and Cellular Biology.

[25]  J. Frank,et al.  Use of multivariate statistics in analysing the images of biological macromolecules. , 1981, Ultramicroscopy.

[26]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[27]  M van Heel,et al.  Statistical image analysis of electron micrographs of ribosomal subunits. , 1988, Methods in enzymology.

[28]  Janusz M Bujnicki,et al.  SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. , 2009, Genes & development.

[29]  Karsten Suhre,et al.  ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement , 2004, Nucleic Acids Res..

[30]  G. Meister,et al.  A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs , 2001, Nature Cell Biology.

[31]  U. Fischer,et al.  Biogenesis of spliceosomal small nuclear ribonucleoproteins , 2011, Wiley interdisciplinary reviews. RNA.

[32]  U. Fischer,et al.  Cellular strategies for the assembly of molecular machines. , 2010, Trends in biochemical sciences.

[33]  H. Stark,et al.  Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra. , 2003, Journal of structural biology.

[34]  R. Ellis,et al.  Molecular chaperones: assisting assembly in addition to folding. , 2006, Trends in biochemical sciences.

[35]  H. Stark,et al.  An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs , 2008, Cell.

[36]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[37]  H. Stark,et al.  Corrim-based alignment for improved speed in single-particle image processing. , 2003, Journal of structural biology.

[38]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[39]  H. Stark,et al.  Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy. , 2005, Journal of structural biology.

[40]  Jeongsik Yong,et al.  Why do cells need an assembly machine for RNA-protein complexes? , 2004, Trends in cell biology.

[41]  Martin Phillips,et al.  Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. Nagai,et al.  Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis , 2011, Nature.

[43]  Utz Fischer,et al.  Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster , 2008, Proceedings of the National Academy of Sciences.

[44]  Utz Fischer,et al.  Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs , 2002, The EMBO journal.

[45]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Adam W Van Wynsberghe,et al.  Protein structural variation in computational models and crystallographic data. , 2006, Structure.

[47]  K. Nagai,et al.  Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal snRNPs , 1999, Cell.

[48]  M. van Heel Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. , 1987, Ultramicroscopy.

[49]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[50]  G. Dreyfuss,et al.  SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. , 2001, Molecular cell.

[51]  U. Fischer,et al.  The role of RNP biogenesis in spinal muscular atrophy. , 2009, Current opinion in cell biology.

[52]  G. Dreyfuss,et al.  The SMN complex. , 2004, Experimental cell research.