Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system

Based on Rabinovich system, a 4D Rabinovich system is generalized to study hidden attractors, multiple limit cycles and boundedness of motion. In the sense of coexisting attractors, the remarkable finding is that the proposed system has hidden hyperchaotic attractors around a unique stable equilibrium. To understand the complex dynamics of the system, some basic properties, such as Lyapunov exponents, and the way of producing hidden hyperchaos are analyzed with numerical simulation. Moreover, it is proved that there exist four small-amplitude limit cycles bifurcating from the unique equilibrium via Hopf bifurcation. Finally, boundedness of motion of the hyperchaotic attractors is rigorously proved.

[1]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[2]  B. Jones,et al.  Lecture notes in mathematics: rudiments of Riemann surfaces , 1971 .

[3]  M. Rabinovich,et al.  Onset of stochasticity in decay confinement of parametric instability , 1978 .

[4]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[5]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[6]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[7]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[8]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[9]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[10]  Pei Yu,et al.  COMPUTATION OF NORMAL FORMS VIA A PERTURBATION TECHNIQUE , 1998 .

[11]  J. Sprott Chaos and time-series analysis , 2001 .

[12]  Pei Yu,et al.  Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields , 2005 .

[13]  P. Yu,et al.  Closed-Form Conditions of bifurcation Points for General Differential Equations , 2005, Int. J. Bifurc. Chaos.

[14]  Guanrong Chen,et al.  Classification of Chaos in 3-d Autonomous Quadratic Systems-I: Basic Framework and Methods , 2006, Int. J. Bifurc. Chaos.

[15]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[16]  Jaume Llibre,et al.  On the global dynamics of the Rabinovich system , 2008 .

[17]  J. Llibre,et al.  HOPF BIFURCATION IN HIGHER DIMENSIONAL DIFFERENTIAL SYSTEMS VIA THE AVERAGING METHOD , 2009 .

[18]  Emad E. Mahmoud,et al.  On the hyperchaotic complex Lü system , 2009 .

[19]  Guanrong Chen,et al.  On the Nonequivalence of Lorenz System and Chen System , 2009, Int. J. Bifurc. Chaos.

[20]  Qigui Yang,et al.  Hopf bifurcation analysis in a 4D-hyperchaotic system , 2010, J. Syst. Sci. Complex..

[21]  M.,et al.  Onset of stochasticity in decay confinement of parametric instability , 2010 .

[22]  Qigui Yang,et al.  A hyperchaotic system from the Rabinovich system , 2010, J. Comput. Appl. Math..

[23]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[24]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[25]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[26]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[27]  Liu Yong-jian,et al.  Hyperchaotic system from controlled Rabinovich system , 2011 .

[28]  Jaume Llibre,et al.  Hopf bifurcation for some analytic differential systems in R^3 via averaging theory , 2011 .

[29]  K. S. Ojo,et al.  Synchronization of 4D Rabinovich Hyperchaotic Systems for Secure Communication , 2012 .

[30]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[31]  Yongjian Liu,et al.  Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system , 2011, Nonlinear Dynamics.

[32]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[33]  Pei Yu,et al.  Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles , 2012 .

[34]  M. M'Saad,et al.  Fuzzy adaptive observer-based projective synchronization for nonlinear systems with input nonlinearity , 2012 .

[35]  Li Feng,et al.  Hopf bifurcation analysis and numerical simulation in a 4D-hyoerchaotic system , 2012 .

[36]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[37]  Qigui Yang,et al.  Dynamical analysis of the generalized Sprott C system with only two stable equilibria , 2012 .

[38]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[39]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[40]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[41]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[42]  R. A. Gorder,et al.  Competitive modes for the Baier–Sahle hyperchaotic flow in arbitrary dimensions , 2013 .

[43]  A. Boulkroune,et al.  A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems , 2014 .

[44]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[45]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[46]  Julien Clinton Sprott,et al.  When Two Dual Chaotic Systems Shake Hands , 2014, Int. J. Bifurc. Chaos.

[47]  J. Llibre,et al.  Zero-Hopf bifurcation for a class of Lorenz-type systems , 2014 .

[48]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[49]  D. Baleanu,et al.  Discrete fractional logistic map and its chaos , 2014 .

[50]  Yuming Chen,et al.  Dynamics of a hyperchaotic Lorenz-type system , 2014 .

[51]  Pei Yu,et al.  An explicit recursive formula for computing the normal forms associated with semisimple cases , 2014, Commun. Nonlinear Sci. Numer. Simul..

[52]  Julien Clinton Sprott,et al.  A dynamical system with a strange attractor and invariant tori , 2014 .

[53]  Julien Clinton Sprott,et al.  Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.

[54]  Zhouchao Wei,et al.  Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.

[55]  Jinde Cao,et al.  Hopf bifurcation in an $${{\mathbf {n}}}$$n-dimensional Goodwin model via multiple delays feedback , 2015 .

[56]  Abdesselem Boulkroune,et al.  Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems , 2015, Complex..

[57]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .