Broadband gate-tunable terahertz plasmons in graphene heterostructures

Graphene, a unique two-dimensional material comprising carbon in a honeycomb lattice1, has brought breakthroughs across electronics, mechanics and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear dispersion2,3. Here, we demonstrate a counter-pumped all-optical difference frequency process to coherently generate and control terahertz plasmons in atomic-layer graphene with octave-level tunability and high efficiency. We leverage the inherent surface asymmetry of graphene for strong second-order nonlinear polarizability4,5, which, together with tight plasmon field confinement, enables a robust difference frequency signal at terahertz frequencies. The counter-pumped resonant process on graphene uniquely achieves both energy and momentum conservation. Consequently, we demonstrate a dual-layer graphene heterostructure with terahertz charge- and gate-tunability over an octave, from 4.7 THz to 9.4 THz, bounded only by the pump amplifier optical bandwidth. Theoretical modelling supports our single-volt-level gate tuning and optical-bandwidth-bounded 4.7 THz phase-matching measurements through the random phase approximation, with phonon coupling, saturable absorption and below the Landau damping, to predict and understand graphene plasmon physics.An all-optical difference frequency process is exploited to generate terahertz graphene plasmons that are tunable over an octave.

[1]  Z N Wang,et al.  Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers , 2015, Scientific reports.

[2]  O. P. Marshall,et al.  Gain modulation by graphene plasmons in aperiodic lattice lasers , 2016, Science.

[3]  J Moger,et al.  Coherent nonlinear optical response of graphene. , 2010, Physical review letters.

[4]  Fengnian Xia,et al.  Graphene Nanophotonics , 2011, IEEE Photonics Journal.

[5]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[6]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[7]  S. A. Mikhailov,et al.  Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems , 2011, 1102.5216.

[8]  Guofu Qiao,et al.  Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides. , 2014, Optics express.

[9]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[10]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[11]  L. Novotný,et al.  Nonlinear excitation of surface plasmon polaritons by four-wave mixing. , 2008, Physical review letters.

[12]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[13]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[14]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[15]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[16]  Zhipei Sun Optical modulators with two-dimensional layered materials , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[17]  E. H. Hwang,et al.  Plasmon-phonon coupling in graphene , 2010, 1008.0862.

[18]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[19]  Harry A. Atwater,et al.  Electronic modulation of infrared radiation in graphene plasmonic resonators. , 2015, Nature communications.

[20]  G. Bartal,et al.  Plasmon-enhanced four-wave mixing for superresolution applications. , 2014, Physical review letters.

[21]  David A. Ritchie,et al.  Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy , 2014 .

[22]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[23]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[24]  Reza Asgari,et al.  Double-layer graphene and topological insulator thin-film plasmons , 2011, 1112.1610.

[25]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[26]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[27]  P. L. Richards,et al.  Measurements of thermal transport in low stress silicon nitride films , 1998 .

[28]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[29]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[30]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[31]  Yonghao Cui,et al.  Backward phase-matching for nonlinear optical generation in negative-index materials. , 2015, Nature materials.

[32]  Wenjuan Zhu,et al.  Silicon nitride gate dielectrics and band gap engineering in graphene layers. , 2010, Nano letters.

[33]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[34]  Manijeh Razeghi,et al.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers , 2016, Scientific Reports.

[35]  A. Belyanin,et al.  Efficient nonlinear generation of THz plasmons in graphene and topological insulators. , 2013, Physical review letters.

[36]  F. Capasso,et al.  Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[37]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[38]  A. M. van der Zande,et al.  Regenerative oscillation and four-wave mixing in graphene optoelectronics , 2012, Conference on Lasers and Electro-Optics.

[39]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[40]  Euan Hendry,et al.  All-optical generation of surface plasmons in graphene , 2015, Nature Physics.

[41]  J. Faist,et al.  Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide , 2014, 1405.7607.

[42]  Seungyong Jung,et al.  Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources , 2014, Nature Communications.

[43]  Reza Asgari,et al.  Observation of Plasmarons in Quasi-Freestanding Doped Graphene , 2010, Science.

[44]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[45]  F. Javier García de Abajo Graphene nanophotonics , 2016 .

[46]  S. Das Sarma,et al.  Plasmon modes of spatially separated double-layer graphene , 2009 .

[47]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[48]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[49]  James Hone,et al.  Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene , 2016, Nature Photonics.

[50]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[51]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[52]  J. Teng,et al.  Optical coupling of surface plasmons between graphene sheets , 2012 .

[53]  Amaia Pesquera,et al.  Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators , 2016, Nature Photonics.

[54]  J. Cox,et al.  Electrically tunable nonlinear plasmonics in graphene nanoislands , 2014, Nature Communications.

[55]  Zhi‐zhan Xu,et al.  Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation , 2017, Nature Photonics.

[56]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[57]  T. Stauber Plasmonics in Dirac systems: from graphene to topological insulators , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[59]  K. Vahala,et al.  Electro-optical frequency division and stable microwave synthesis , 2014, Science.

[60]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[61]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[62]  So Edeagu,et al.  MID-INFRARED QUANTUM CASCADE LASERS , 2012 .

[63]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[64]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[65]  García de Abajo Fj Graphene Nanophotonics , 2013, Science.

[66]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[67]  D. Ansell,et al.  Hybrid graphene plasmonic waveguide modulators , 2015, Nature communications.

[68]  A. Boudrioua Optical Waveguide Theory , 2010 .

[69]  Takashi Taniguchi,et al.  Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. , 2016, Nature nanotechnology.