Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer.

A Bose-Einstein condensate (BEC) is a state of matter in which extensive collective coherence leads to intriguing macroscopic quantum phenomena. In crystalline semiconductor microcavities, bosonic quasiparticles, known as exciton-polaritons, can be created through strong coupling between bound electron-hole pairs and the photon field. Recently, a non-equilibrium BEC (ref. ) and superfluidity have been demonstrated in such structures. With organic crystals grown inside dielectric microcavities, signatures of polariton lasing have been observed. However, owing to the deleterious effects of disorder and material imperfection on the condensed phase, only crystalline materials of the highest quality have been used until now. Here we demonstrate non-equilibrium BEC of exciton-polaritons in a polymer-filled microcavity at room temperature. We observe thermalization of polaritons and, above a critical excitation density, clear evidence of condensation at zero in-plane momentum, namely nonlinear behaviour, blueshifted emission and long-range coherence. The key signatures distinguishing the behaviour from conventional photon lasing are presented. As no crystal growth is involved, our approach radically reduces the complexity of experiments to investigate BEC physics and paves the way for a new generation of opto-electronic devices, taking advantage of the processability and flexibility of polymers.

[1]  V. G. Sala,et al.  Polariton Superfluids Reveal Quantum Hydrodynamic Solitons , 2011, Science.

[2]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[3]  G. Lanzani,et al.  EXCITED-STATE DYNAMICS OF POLY(PARA-PHENYLENE)-TYPE LADDER POLYMERS AT HIGH PHOTOEXCITATION DENSITY , 1998 .

[4]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[5]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Sophie Bouchoule,et al.  Polariton lasing in a hybrid bulk ZnO microcavity , 2011 .

[7]  B. Deveaud-Plédran,et al.  Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. , 2007, Physical Review Letters.

[8]  M. Wouters,et al.  Quantized vortices in an exciton–polariton condensate , 2008 .

[9]  Jacek Kasprzak,et al.  Condensation of exciton polaritons , 2006 .

[10]  G. Rocca,et al.  Microscopic theory of polariton lasing via vibronically assisted scattering , 2013, 1306.2222.

[11]  Gregor Weihs,et al.  Condensation of Semiconductor Microcavity Exciton Polaritons , 2002, Science.

[12]  Carlo Piermarocchi,et al.  Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons , 1997 .

[13]  Ullrich Scherf,et al.  Polyarylenes and poly(arylenevinylene)s, 9 The oxidized states of a (1,4‐phenylene) ladder polymer , 1992 .

[14]  S. Höfling,et al.  Characterization of two-threshold behavior of the emission from a GaAs microcavity , 2012 .

[15]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[16]  Nikolaj Moll,et al.  Ultra-small footprint photonic crystal lasers with organic gain material , 2008, SPIE Photonics Europe.

[17]  A. Lemaître,et al.  Photon lasing in GaAs microcavity : Similarities with a polariton condensate , 2007, 0709.4372.

[18]  Nasser N Peyghambarian,et al.  Temperature dependence of the threshold for laser emission in polymer microlasers , 2000 .

[19]  Donal D. C. Bradley,et al.  Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities , 1999 .

[20]  S R Forrest,et al.  Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. , 2004, Physical review letters.

[21]  Harald Giessen,et al.  THE OPTICAL GAIN MECHANISM IN SOLID CONJUGATED POLYMERS , 1998 .

[22]  Cristiano Ciuti,et al.  Quantum Fluids of Light , 2014, CLEO 2014.

[23]  David G. Lidzey,et al.  Vibrationally Assisted Polariton‐Relaxation Processes in Strongly Coupled Organic‐Semiconductor Microcavities , 2011 .

[24]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[25]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[26]  M. S. Skolnick,et al.  Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities , 2009, 0903.1570.

[27]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[28]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[29]  M. Amthor,et al.  An electrically pumped polariton laser , 2013, Nature.