Nonrad: Computing nonradiative capture coefficients from first principles

Point defects in semiconductor crystals provide a means for carriers to recombine nonradiatively. This recombination process impacts the performance of devices. We present the Nonrad code that implements the first-principles approach of Alkauskas et al. [Phys. Rev. B 90, 075202 (2014)] for the evaluation of nonradiative capture coefficients based on a quantum-mechanical description of the capture process. An approach for evaluating electron-phonon coupling within the projector augmented wave formalism is presented. We also show that the common procedure of replacing Dirac delta functions with Gaussians can introduce errors into the resulting capture rate, and implement an alternative scheme to properly account for vibrational broadening. Lastly, we assess the accuracy of using an analytic approximation to the Sommerfeld parameter by comparing with direct numerical evaluation.

[1]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  A. Stoneham Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors , 1976 .

[4]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[5]  I. Yassievich,et al.  Nonradiative Recombination in Semiconductors , 1991 .

[6]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[7]  Department of Physics,et al.  Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections , 2015 .

[8]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  Georg Kresse,et al.  Iron as a source of efficient Shockley-Read-Hall recombination in GaN , 2016 .

[11]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[12]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[13]  A. Stoneham,et al.  Non-radiative transitions in semiconductors , 1981 .

[14]  Jörg Neugebauer,et al.  Electrostatic interactions between charged defects in supercells , 2011 .

[15]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[16]  Comparative study of ab initio nonradiative recombination rate calculations under different formalisms , 2015, 1502.04559.

[18]  R. Pässler Calculation of nonradiative multiphonon capture coefficients and ionization rates for neutral centres according to the static coupling scheme: I. Theory , 1975 .

[19]  Ryogo Kubo,et al.  Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal , 1955 .

[20]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[21]  B. Bartolo,et al.  Advances in nonradiative processes in solids , 1991 .

[22]  D. Lang,et al.  Nonradiative capture and recombination by multiphonon emission in GaAs and GaP , 1977 .

[23]  A. Baldereschi,et al.  Mean-Value Point in the Brillouin Zone , 1973 .

[24]  R. Pässler Relationships between the nonradiative multiphonon carrier‐capture properties of deep charged and neutral centres in semiconductors , 1976 .

[25]  Heinz Schulz,et al.  Crystal structure refinement of AlN and GaN , 1977 .

[26]  Q. Yan,et al.  First-principles theory of nonradiative carrier capture via multiphonon emission , 2014, 1407.4197.

[27]  I. Tanaka,et al.  Finite-displacement computation of the electron-phonon interaction within the projector augmented-wave method , 2019 .

[28]  R. Siezen,et al.  others , 1999, Microbial Biotechnology.

[29]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[30]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  A. Alkauskas,et al.  Tutorial: Defects in semiconductors—Combining experiment and theory , 2016 .

[32]  D. Wickramaratne,et al.  Comment on "Comparative study of ab initio nonradiative recombination rate calculations under different formalisms" , 2018 .

[33]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[34]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.