A Universal Mathematical Model for a New Combined-Cycle, Fossil-Fuel Power System (LAJ Cycle): Part 2 — Dynamic Model
暂无分享,去创建一个
A universal mathematical model (UMM) has been developed and applied to the LAJ (for Labinov, Armstrong, and Judkins) cycle, a new combined-cycle, fossil-fuel power system. The UMM includes static and dynamic models of the system. The static model allows for thermodynamic and thermochemical analyses of the basic system components (reformer, turbine, membrane separator, fuel cell, air compressor, heat exchanger, and other components) and the entire system. Equilibrium compositions of reforming products are defined by minimizing Gibbs free energy of the mixtures using the Lagrangian multiplier method. The dependence of the main system parameters on pressure (P), temperature (T), and water-to-methane molar ratios (N) at the steam reformer have been evaluated. For selected reforming parameters, viz., P = 4.0 MPa and T = 1200 K, the degree of methane conversion is near 95% with N = 5. However, in view of mass and size limitations on equipment, a lower value of N = 3 is preferred, in which case the degree of methane conversion is 88%. The dependence of the system static model parameters on N has been investigated, and economic characteristics of the model have been evaluated for an output power of 250 kW. It is shown that when, N = 3, the fuel cost contribution to overall electricity costs is 1 cent/kWh.Copyright © 2002 by ASME