Sentiment Relevance

A number of different notions, including subjectivity, have been proposed for distinguishing parts of documents that convey sentiment from those that do not. We propose a new concept, sentiment relevance, to make this distinction and argue that it better reflects the requirements of sentiment analysis systems. We demonstrate experimentally that sentiment relevance and subjectivity are related, but different. Since no large amount of labeled training data for our new notion of sentiment relevance is available, we investigate two semi-supervised methods for creating sentiment relevance classifiers: a distant supervision approach that leverages structured information about the domain of the reviews; and transfer learning on feature representations based on lexical taxonomies that enables knowledge transfer. We show that both methods learn sentiment relevance classifiers that perform well.

[1]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[2]  Songbo Tan,et al.  Improving SCL Model for Sentiment-Transfer Learning , 2009, HLT-NAACL.

[3]  Maite Taboada,et al.  Genre-Based Paragraph Classification for Sentiment Analysis , 2009, SIGDIAL Conference.

[4]  Christine D. Piatko,et al.  Using “Annotator Rationales” to Improve Machine Learning for Text Categorization , 2007, NAACL.

[5]  Elena Lloret,et al.  Towards a unified framework for opinion retrieval, mining and summarization , 2012, Journal of Intelligent Information Systems.

[6]  Neville Ryant,et al.  A Large-scale Classication of English Verbs , 2006 .

[7]  Xiaoyan Zhu,et al.  Movie review mining and summarization , 2006, CIKM '06.

[8]  Dan Klein,et al.  Optimization, Maxent Models, and Conditional Estimation without Magic , 2003, NAACL.

[9]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[10]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[11]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[12]  Andrew V. Goldberg,et al.  On Implementing Push-Relabel Method for the Maximum Flow Problem , 1995, IPCO.

[13]  Bernd Bohnet,et al.  Top Accuracy and Fast Dependency Parsing is not a Contradiction , 2010, COLING.

[14]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[15]  J. Treble,et al.  Computer Intensive Methods for Hypothesis Testing , 1990 .

[16]  Claire Cardie,et al.  Multi-Level Structured Models for Document-Level Sentiment Classification , 2010, EMNLP.

[17]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[18]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[19]  James Pustejovsky,et al.  Corelex: systematic polysemy and underspecification , 1998 .

[20]  Tim Loughran,et al.  When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks , 2010 .

[21]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[22]  Neville Ryant,et al.  A large-scale classification of English verbs , 2008, Lang. Resour. Evaluation.

[23]  Oscar Täckström,et al.  Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models , 2011, ECIR.

[24]  Lluís Màrquez i Villodre,et al.  Sibyl, a factoid question-answering system for spoken documents , 2012, TOIS.

[25]  Jörg Tiedemann,et al.  Simple is Best: Experiments with Different Document Segmentation Strategies for Passage Retrieval , 2008, COLING 2008.

[26]  Koji Eguchi,et al.  Sentiment Retrieval using Generative Models , 2006, EMNLP.

[27]  Janyce Wiebe,et al.  Annotating Opinions in the World Press , 2003, SIGDIAL Workshop.

[28]  Marti A. Hearst Text Tiling: Segmenting Text into Multi-paragraph Subtopic Passages , 1997, CL.

[29]  Sebastian Thrun,et al.  Is Learning The n-th Thing Any Easier Than Learning The First? , 1995, NIPS.

[30]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Part-Of-Speech Tagging , 1996, EMNLP.

[31]  Paolo Rosso,et al.  Answering questions with an n-gram based passage retrieval engine , 2009, Journal of Intelligent Information Systems.

[32]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.