Non-autonomous dynamics of a semi-Kolmogorov population model with periodic forcing

Abstract In this paper we study a semi-Kolmogorov type of population model, arising from a predator–prey system with indirect effects. In particular we are interested in investigating the population dynamics when the indirect effects are time dependent and periodic. We first prove the existence of a global pullback attractor. We then estimate the fractal dimension of the attractor, which is done for a subclass by using Leonov’s theorem and constructing a proper Lyapunov function. To have more insights about the dynamical behavior of the system we also study the coexistence of the three species. Numerical examples are provided to illustrate all the theoretical results.

[1]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[2]  Vlastimil Křivan,et al.  CONNECTING THEORETICAL AND EMPIRICAL STUDIES OF TRAIT‐MEDIATED INTERACTIONS , 2003 .

[3]  Gennady A. Leonov,et al.  Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors , 1992 .

[4]  Simone Campanoni Competition , 1866, Nature.

[5]  Rebecca E. Irwin,et al.  Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits , 2004 .

[6]  S. Dodson,et al.  Predation, Body Size, and Composition of Plankton. , 1965, Science.

[7]  R. Colucci,et al.  Periodic Orbits for a Three-Dimensional Biological Differential Systems , 2013 .

[8]  Horst R. Thieme,et al.  Dynamical Systems And Population Persistence , 2016 .

[9]  Carles Simó,et al.  Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing , 2002 .

[10]  O. Sarnelle Daphnia as keystone predators: effects on phytoplankton diversity and grazing resistance , 2005 .

[11]  Pauline van den Driessche,et al.  Three-Dimensional Competitive Lotka-Volterra Systems with no Periodic Orbits , 1998, SIAM J. Appl. Math..

[12]  R. Holt,et al.  Predators, Ecological Role of , 2001 .

[13]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[14]  J. Huisman,et al.  Biodiversity of plankton by species oscillations and chaos , 1999, Nature.

[15]  S. M. Shahruz,et al.  Limit cycle behavior in three- or higher-dimensional non-linear systems : The Lotka-Volterra example , 2001 .

[16]  Salvatore Rionero,et al.  On the stability of non-autonomous perturbed Lotka-Volterra models , 2013, Appl. Math. Comput..

[17]  Renato Colucci,et al.  Coexistence in a One-Predator, Two-Prey System with Indirect Effects , 2013, J. Appl. Math..

[18]  H. Wolkowicz,et al.  Bounds for eigenvalues using traces , 1980 .

[19]  S. Rionero Stability-Instability criteria for nonautonomous systems , 2009 .

[20]  V. Chepyzhov,et al.  Attractors for Equations of Mathematical Physics , 2001 .

[21]  Bernd Blasius,et al.  Categories of chaos and fractal basin boundaries in forced predator–prey models , 2001 .

[22]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[23]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems , 2011 .

[24]  D. O. Hessen,et al.  Phytoplankton contribution to sestonic mass and elemental ratios in lakes: Implications for zooplankton nutrition , 2003 .

[25]  G. Leonov,et al.  Upper estimates for the hausdorff dimension of negatively invariant sets of local cocycles , 2011 .

[26]  J. Timothy Wootton,et al.  Indirect Effects, Prey Susceptibility, and Habitat Selection: Impacts of Birds on Limpets and Algae , 1992 .

[27]  B. Menge,et al.  Indirect Effects in Marine Rocky Intertidal Interaction Webs: Patterns and Importance , 1995 .

[28]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[29]  A Hastings,et al.  Chaos in one-predator, two-prey models: general results from bifurcation theory. , 1994, Mathematical biosciences.

[30]  E. Li,et al.  Grazer‐induced defence in Phaeocystis globosa (Prymnesiophyceae): Influence of different nutrient conditions , 2010 .

[31]  T. Caraballo,et al.  Asymptotic behaviour of a non-autonomous Lorenz-84 system , 2014 .

[32]  David Rakhmilʹevich Merkin,et al.  Introduction to the Theory of Stability , 1996 .

[33]  A. Ives,et al.  GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID , 2001 .

[34]  Seasonal Isochronic Forcing of Lotka Volterra Equations , 1996 .

[35]  D. Reznick,et al.  Interactions between the direct and indirect effects of predators determine life history evolution in a killifish , 2008, Proceedings of the National Academy of Sciences.

[36]  Jean-Marc Ginoux,et al.  Chaos in a Three-Dimensional Volterra-gause Model of Predator-prey Type , 2005, Int. J. Bifurc. Chaos.